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Interaction of quantum systemSa described by the generalisedρ × ρ eigenvalue equa-
tion A|�s〉 = EsSa |�s〉 (s = 1, . . . , ρ) with quantum systemSb described by the gener-
alisedn × n eigenvalue equationB|�i 〉 = λiSb|�i 〉 (i = 1, . . . , n) is considered. With the
systemSa is associatedρ-dimensional spaceXa

ρ and with the systemSb is associated an

n-dimensional spaceXb
n that is orthogonal toXa

ρ . Combined systemS is described by the

generalised(ρ + n)×(ρ + n) eigenvalue equation[A+ B+ V]|�k〉 = εk[Sa + Sb + P]|�k〉
(k = 1, . . . , n+ρ) where operatorsV andP represent interaction between those two systems.
All operators are Hermitian, while operatorsSa, Sb andS = Sa+Sb+P are, in addition, pos-
itive definite. It is shown that each eigenvalueεk /∈ {λi} of the combined system is the eigen-
value of theρ × ρ eigenvalue equation[�(εk)+ A]|�a

k
〉 = εkSa |�a

k
〉. Operator�(ε) in this

equation is expressed in terms of the eigenvaluesλi of the systemSb and in terms of matrix
elements〈χs |V|�i 〉 and〈χs |P|�i 〉 where vectors|χs〉 form a base inXa

ρ . Eigenstate|�a
k 〉 of

this equation is the projection of the eigenstate|�k〉 of the combined system on the spaceXa
ρ .

Projection|�b
k
〉 of |�k〉 on the spaceXb

n is given by|�b
k
〉 = (εkSb − B)−1(V− εkP)|�a

k
〉

where(εkSb − B)−1 is inverse of(εkSb − B) in Xb
n. Hence, if the solution to the systemSb

is known, one can obtain all eigenvaluesεk /∈ {λi} and all the corresponding eigenstates|�k〉
of the combined system as a solution of the aboveρ × ρ eigenvalue equation that refers to
the systemSa alone. Slightly more complicated expressions are obtained for the eigenvalues
εk ∈ {λi} and the corresponding eigenstates, provided such eigenvalues and eigenstates exist.

KEY WORDS: interaction of quantum systems, perturbation, diagonalisation, generalised
eigenvalue equation, eigenvalues, eigenstates

1. Introduction

Consider quantum systemS consisting of two subsystemsSa andSb that are in
mutual interaction. We assume that the solution to the isolated systemSb is known,
and we would like to find an exact solution of the combined systemS = Sa ⊕ Sb. In
particular, we would like to find an efficient description of the systemSa subject to the
interaction with the known systemSb. In a standard approach, this is usually done either
with some diagonalization method, or with a perturbation expansion. We would like to
obtain this solution in a more efficient way, utilising as much as possible the knowledge
of the solution to the subsystemSb.
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There are numerous problems in physics and chemistry of this type. For exam-
ple, one may consider the interaction of an atom or a molecule (systemSa) that is
placed on a surface of some solid state with this solid state (systemSb). Usually an
approximate solution to the systemSb is known. To the extend this solution is reliable,
one has a problem of the interaction of a systemSa with a known systemSb. As an-
other example, consider the effect of various substitution groups (systemSa) in a given
molecule. If the solution to the remaining molecular skeleton (systemSb) is known,
one would like to obtain in a relatively simple way the solution of the combined sys-
tem S. To the same type of problems belongs substitution of an atom in a molecule
with a heteroatom, creation and destruction of a chemical bond, etc. One may also
consider molecular vibrations in the harmonic approximation [1]. If atomic displace-
ments are expressed in terms of Cartesian coordinates, one arrives at the eigenvalue
equation of a typeF|�k〉 = εkM|�k〉, whereF is a force field matrix, whileM is a
diagonal matrix containing on a diagonal atomic masses. Both matrices are Hermitian,
and matrixM is, in addition, positive definite. One may be interested how frequencies
and normal modes of some molecular systemSa are influenced by the interaction of
this system with another systemSb with known frequencies and normal modes. Sys-
tem Sb may be another molecule, in which case one is looking for frequencies and
normal modes of the combined molecular systemS. However, systemSb may be a
solid state, with systemSa representing a molecule that interacts with the surface of
this solid state. In this case one usually wants to know how frequencies and normal
modes of a moleculeSa are influenced by the interaction of this molecule with the solid
stateSb.

There is another conceptually different class of problems that can be formulated in
terms of the interaction of quantum systemsSa andSb, where the solution to the system
Sb is known. Assume one has to solve an eigenvalue equation describing some quantum
system and one has obtained an approximate solution in a finite base|φi〉 (i = 1, . . . , n).
One can increase this base with additional vectors|χs〉 (s = 1, . . . , ρ) in order to im-
prove the solution. The eigenvalue equation in the original base{|φi〉} represents sys-
temSb, eigenvalue equation in the augmented base{|φi〉, |χs〉} represents combined sys-
temS, and additional vectors|χs〉 form a base in a systemSa. For example, base vectors
|φi〉 can be atomic orbitals, while the eigenvalues and the eigenstates of the correspond-
ing eigenvalue equation represent molecular orbitals and their energies. One would like
to find out how the inclusion of additional atomic orbitals|χs〉 influences those molec-
ular orbitals and their energies. As another example, assume that base vectors|φi〉 are
resonance structures in a VB model, and one is looking for the VB ground state. One
can increase the base set{|φi〉} with additional resonance structures|χs〉(s = 1, . . . , ρ)
in order to decrease ground state energy as much as possible. Since VB resonance struc-
tures are in general not orthogonal to each other, the corresponding eigenvalue equa-
tion is a generalised eigenvalue equation of a typeH|�〉 = εS|�〉 whereS is positive
definite.



T.P. Živković / On the interaction of two finite-dimensional quantum systems 41

2. Formulation of a problem

Let us now formulate in more mathematical terms general type of the problem
to be considered. We will restrict our discussion to quantum systems involving finite-
dimensional spaces. The case of the infinite dimensional systems that may contain eigen-
value bands will be considered elsewhere [2].

We associate with a systemSa a ρ-dimensional spaceXa
ρ and with a systemSb

an n-dimensional spaceXb
n. Those spaces are orthogonal to each other, and with the

combined systemS is associated an(n+ ρ)-dimensional spaceXn+ρ . SystemSa alone
is described by the generalised eigenvalue equation

A|�s〉 = EsSa|�s〉, s = 1, . . . , ρ, (1a)

whereA andSa are Hermitian operators acting in the spaceXa
ρ , and whereSa is, in addi-

tion, positive definite. No other assumption about those operators is made. Hermiticity
of these operators and positive definiteness ofSa ensures that the eigenvaluesEs are real.
In addition, the corresponding eigenstates can be always orthonormalized according to
(see appendix): 〈

�s

∣∣Sa
∣∣�p

〉 = δsp. (1b)

In a similar way, systemSb alone is described by the generalised eigenvalue equa-
tion

B|�i〉 = λiSb|�i〉, i = 1, . . . , n, (2a)

whereB andSb are Hermitian operators acting in the spaceXb
n and where operatorSb

is, in addition, positive definite. Eigenvaluesλi are hence real, and the corresponding
eigenstates|�i〉 can be orthonormalized according to〈

�i

∣∣Sb
∣∣�j

〉 = δij . (2b)

Relations (1) and (2) describe systemsSa andSb in isolation, that is without mu-
tual interaction. The interaction is introduced by Hermitian operatorsV andP, and the
eigenvalue equation describing the combined systemS subject to the interaction(V,P)
is

H|�k〉 = εkS|�k〉, k = 1, . . . , n+ ρ, (3a)

where

H = A+ B+ V, S = Sa + Sb + P. (3b)

OperatorsV and P that describe interaction have nonvanishing matrix elements
only between states in the spaceXa

ρ and states in the spaceXb
n. Hence

V = IaVIb + IbVIa, P = IaPIb + IbPIa, (3c)

whereIa andIb are projection operators on spacesXa
ρ andXb

n, respectively.
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In order to guarantee the reality of the eigenvaluesεr , operatorS is required to
be positive definite in the combined spaceXn+ρ . This requirement imposes some re-
strictions on the operatorP. There is no restriction on the operatorV, except that
this operator should be Hermitian and that it should connect states in the spacesXa

ρ

andXb
n.
In analogy to (1b) and (2b), eigenstates|�k〉 of the combined system can be ortho-

normalized according to

〈�k|S|�l〉 = δkl. (3d)

The above eigenvalue equations can be formulated as matrix equations in some
fixed basis. Let{|r〉} (r = 1, . . . , n) be an orthonormalized base in the spaceXb

n

〈r|t〉 = δrt, r, t = 1, . . . , n. (4a)

Similarly, let{|χs〉} (s = 1, . . . , ρ) be a base in the spaceXa
ρ . We make noa priori

assumption about this base. Given this base, one can define operatorKa according to〈
χs

∣∣Ka
∣∣χp

〉 = δsp. (4b)

Since vectors|χs〉 are by definition linearly independent and complete inXa
ρ , op-

eratorKa exists, it is unique, and it is nonsingular inXa
ρ .

Once chosen, bases{|r〉} and{|χs〉} are fixed. For the sake of simplicity, we will
use the same notation for various operators and vectors, and their representations in
those basis. With this conventionB and Sb aren × n matrices with matrix elements
Brt = 〈r|B|t〉 andSb

rt = 〈r|Sb|t〉, respectively, while|�i〉 is ann-component column
vector with components�ir = 〈r|�i〉. Similarly, A and Sa areρ × ρ matrices with
matrix elementsAsp= 〈χs |A|χp〉 andSa

sp= 〈χs |Sa|χp〉, respectively.
In the base{|r〉, |χs〉} of the combined spaceXn+ρ operatorsH = A+ B+ V and

S = Sa + Sb + P are represented by matrices

H =
[

B U
U+ A

]
, S =

[
Sb X
X+ Sa

]
, (5)

whereU = IbVIa and X = IbPIa, while U+ and X+ denote Hermitian conjugate to
U andX, respectively. According to this representation, combined eigenvalue equation
(3a) is an augmented eigenvalue equation, where the eigenvalue equation (2a) containing
matrices of ordern is augmented byρ additional rows andρ additional columns.

Combined systemS is shown schematically in figure 1. Generalised eigenvalue
equations (1a)–(3a) allow for a most general treatment of quantum systemsSa,Sb

andS. Most important is the caseSa = Ia,Sb = Ib and P = 0 when those equa-
tions reduce to normal eigenvalue equations. We will treat those eigenvalue equa-
tions in the above most general form. Our aim is to solve the combined eigenvalue
equation (3a) given the solution (eigenvaluesλi and eigenstates|�i〉) of the eigen-
value equation (2a). Accordingly, we will consider systemSb as the original unper-
turbed system. From this point of view, relation (3a) is a perturbed eigenvalue equa-
tion where the “perturbation” is represented by the interaction(V,P) and by the sys-
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Figure 1. Interaction of the quantum systemSa described by the generalised eigenvalue equation (1a) with
the quantum systemSb described by the generalised eigenvalue equation (1b). Combined systemS that

incorporates generalised interaction(V,P) is described by the generalised eigenvalue equation (3a).

temSa(operatorsA andSa). Note that in the traditional formulation of the perturbation
approach, one usually considers union of systemsSa andSb without mutual interac-
tion as the unperturbed system. We apply here the notion of the unperturbed system
to the systemSb alone. This allows for a more flexible treatment of a combined sys-
temS.

We will solve eigenvalue equation (3a) following general method of the low rank
perturbation (LRP) approach [3]. In this approach it is convenient to distinguish two
types of the solution to the perturbed equation. If the eigenvalueεk of the combined
systemS differs from all the eigenvaluesλi of the unperturbed systemSb, that is if
εk /∈ {λi}, this eigenvalue and the corresponding eigenstate or eigenstates|�k〉 is “car-
dinal”. Otherwise, this eigenvalue and the corresponding eigenstate or eigenstates is
“singular” [3]. Most numerous and most important are cardinal eigenvalues and eigen-
states. Singular eigenvalues usually arise as a consequence of some symmetry, or as a
consequence of some other special condition.

We also distinguishactive and passiveunperturbed eigenvalues. This notion is
defined relative to the perturbation(V,P) [3]. Let the unperturbed eigenvalueλj be
η-degenerate, and let|�jν〉, (ν = 1, . . . , η) be the corresponding unperturbed eigen-
states. By definition, this eigenvalue is passive if all matrix elements〈χs |V− λjP|�jν〉
(s = 1, . . . , ρ; ν = 1, . . . , η) vanish, otherwise it is active. In other words,λj is passive
if the subspace associated with this eigenvalue is contained in a null subspace of the
operatorV− λjP:

(V− λjP)|�jν〉 = 0, ν = 1, . . . , η. (6)

3. Solution of the combined eigenvalue equation

In the appendix we derive two theorems that provide a general solution to the com-
bined eigenvalue equation (3a). This solution is expressed in terms of the known solution
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to the unperturbed systemSb. In this respect, suggested method resembles the perturba-
tion expansion method, which also requires the knowledge of the solution to the unper-
turbed system. However, unlike perturbation expansion, the obtained relations provide
a solution to the combined system in a closed form. There is no expansion in a power
series, and numerical efficiency of the method does not depend on the magnitude of the
perturbation. In particular, there is no convergence problem in a limitn→∞ [2]. If the
interaction is strong enough, standard perturbation method usually fails in this limit.

First theorem refers to the cardinal eigenvalues and eigenstates of the combined
system:

Theorem 1 (Cardinal eigenvalues and eigenstates). Considerρ-dimensional systemSa

(equation (1a)),n-dimensional systemSb (equation (2a)) and combined(ρ + n)-
dimensional systemS (equation (3a)). Let the eigenstates|�i〉 of Sb be orthonormalized
according to (2b). Let further|χs〉 ∈ Xa

ρ form a base inXa
ρ . Then

(a) εk /∈ {λi} is an eigenvalue of the combined eigenvalue equation (3a) if and only
if it is a root of the functionh(ε)

h(ε) ≡ ∣∣�(ε)+ A− εSa
∣∣ = 0, ε /∈ {λi}, (7)

where�(ε) is aρ × ρ Hermitian matrix with matrix elements

"sp(ε) =
n∑
i

〈χs |V− εP|�i〉〈�i |V− εP|χp〉
ε − λi

, ε /∈ {λi}, (8a)

while A andSa areρ × ρ Hermitian matrices with matrix elements

Asp= 〈χs |A|χp〉, Sa
sp=

〈
χs

∣∣Sa
∣∣χp

〉
. (9)

(b) Letεk /∈ {λi} be an eigenvalue of the combined eigenvalue equation (3a). Each
eigenstate corresponding to this eigenvalue is of the form

|�k〉 =
n∑
i

∑ρ
s 〈�i |V− εkP|χs〉C(k)

s

εk − λi

|�i〉 +
ρ∑
s

C(k)
s |χs〉, (10)

whereC(k)
s are components of a column vectorC(k), a nontrivial solution of the

matrix equation ⌊
�(εk)+ A− εkSa

⌋
C(k) = 0. (11)

Inversely, each state (10) whereC(k) is a nontrivial solution of (11) is an eigenstate
of (3a) that corresponds to the eigenvalueεk. In addition, componentsC(k)

s of C(k) satisfy

C(k)
s =

〈
χs

∣∣Ka
∣∣�k

〉
, s = 1, . . . , ρ. (12)

According to the above theorem, each nontrivial solutionC(k) of (11) produces an
eigenstate of the combined eigenvalue equation. All such eigenstates correspond to the
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same eigenvalueεk. One can show (see appendix) that linearly independent solutions
C(k) produce linearly independent eigenstates. Hence:

Lemma 1. Degeneracy of the eigenvalueεk /∈ {λi} of the combined system equals the
nullity of the operator�(εk)+ A− εkSa.

Since�(εk)+A− εkSa is aρ × ρ matrix, each cardinal eigenvalueεk /∈ {λi} is at
mostρ-degenerate.

Second theorem refers to singular eigenvalues and eigenstates of the combined
system:

Theorem 2 (Singular eigenvalues and eigenstates). Assume the same conditions as in
theorem 1. Let furtherλj be aη-degenerate eigenvalue of the unperturbed eigenvalue
equation (2a), and let|�jν〉(ν = 1, . . . , η) be the corresponding eigenstates orthonor-
malized according to (2b). Then

(a) εk = λj is an eigenvalue of the combined eigenvalue equation (3a) if and only
if it satisfies ∣∣∣∣∣

�(εk)+ A− εkSa W(k)

W(k)+ 0

∣∣∣∣∣ = 0, (13)

whereA andSa areρ×ρ Hermitian matrices with matrix elements (9),�(εk) is
aρ × ρ Hermitian matrix with matrix elements

"sp(εk) =
n∑

i(λi �=εk)

〈χs |V− εkP|�i〉〈�i |V− εkP|χp〉
εk − λi

, εk ∈ {λi}. (8b)

W(k) is aρ × η matrix with matrix elements

W(k)
sν = 〈χs |V− εkP|�jν〉, s = 1, . . . , ρ, ν = 1, . . . , η, (14)

while 0 is aη × η null matrix.

(b) Let εk = λj be an eigenvalue of the combined eigenvalue equation (3a). Each
eigenstate corresponding to this eigenvalue is of the form

|�k〉 =
n∑

i(λi �=εk)

∑ρ
s 〈�i |V− εkP|χs〉C(k)

s

εk − λi

|�i〉 +
ρ∑
s

C(k)
s |χs〉 +

η∑
ν

D(k)
ν |�jν〉,

(15)
whereC(k)

s andD(k)
ν are components of a column vector(C(k),D(k)), a nontriv-

ial solution of the matrix equation[
�(εk)+ A− εkSa W(k)

W(k)+ 0

](
C(k)

D(k)

)
= 0. (16)
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Inversely, each state (15) where(C(k),D(k)) is a nontrivial solution to (16) is an
eigenstate of (3a) corresponding to the eigenvalueεk = λj . In addition, coefficientsC(k)

s

andD(k)
ν satisfy

C(k)
s =

〈
χs

∣∣Ka
∣∣�k

〉
, D(k)

ν =
〈
�jν

∣∣Sb
∣∣�k

〉
, s = 1, . . . , ρ, ν = 1, . . . , η. (17)

Relation (8b) completes the definition of matrix elements"sp(ε). If ε /∈ {λi} those
matrix elements are defined according to (8a), while ifε ∈ {λi} they are defined accord-
ing to (8b). Usually the expression (8a) has singularity in the pointε = λj and in this
case matrix elements"sp(ε) of the operator�(ε) are not continuous in this point. How-
ever, ifλj is passive, expression (8a) has well-defined limit limε→λj "sp(ε) = "sp(λj ).
In this case each matrix element"sp(ε) is continuous and analytic in the pointε = λj .
The functionh(ε) is hence also continuous and analytic in this point.

Concerning degeneracy of singular eigenvalues, one finds in analogy to lemma 1.

Lemma 2. Let εk = λj be a singular eigenvalue of the combined eigenvalue equation.
The degeneracy of this eigenvalue equals the number of linearly independent solutions
(C(k),D(k)) of the matrix equation (16).

Since matrix equation (16) involves a(ρ + η)×(ρ + η) matrix, eigenvalueεk = λj

of the combined system can be at most(ρ + η)-degenerate. One also finds that ifη > ρ

this eigenvalue is at least(η − ρ)-degenerate. It follows that generalised interaction
(V,P) can alter (decrease or increase) degeneracy of the unperturbed eigenvalueλj

by at mostρ. This applies also to cardinal eigenvalues, since each cardinal eigenvalue
εk /∈ {λi} is at mostρ-degenerate.

Theorem 2 supplements theorem 1, and it provides the solution for the remain-
ing singular eigenvalues and eigenstates of the combined eigenvalue equation. Let us
analyse in more details those solutions. Condition (13) expresses the requirement that
matrix equation (16) should have a nontrivial solution. The solution to this equation is
particularly simple if the unperturbed eigenvalueλj is passive. In this caseW(k) = 0 and
(16) implies condition (11) on the vectorC(k). There is no condition on the vectorD(k),
and (16) has always a solution(0,D(k)) whereC(k) = 0 while vectorD(k) can assume
any value. Each unperturbed eigenstate|�jν〉 is hence an eigenstate of the combined
system. In addition, each vectorC(k) that satisfies (11) withεk = λj generates a solution
(C(k), 0) of (16). According to (15), the corresponding eigenstate is

|�k〉 =
n∑

i(λi �=εk)

∑ρ
s 〈�i |V− εkP|χs〉C(k)

s

εk − λi

|�i〉 +
ρ∑
s

C(k)
s |χs〉. (10′)

In conclusion, ifλj is passive,εk = λj is an eigenvalue of the combined system.
Each unperturbed eigenstate|�jν〉(ν = 1, . . . , η) is the corresponding eigenstate of the
combined system. If, in addition,λj satisfiesh(λj ) = 0, there are additional eigen-
states (10′), whereC(k) are nontrivial solutions to (11). Eigenstates (10′) are formally
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identical to the eigenstates (10), except that the summation in (10′) excludes all terms
that satisfyλi = εk. Each such term is indefinite of a type 0/0. Note that ifλj is passive,
functionh(ε) is continuous in this point.

If λj is active, the problem is slightly more complicated. In this caseW(k) �= 0 and
(16) implies a nontrivial condition on a vectorC(k):

W(k)+C(k) = 0. (16′)

General solution to (16) can be now analysed in terms of the solutions to (16′) and
in terms of the solutions to the auxiliary equation

W(k)D(k) = 0. (18)

Each nontrivial solutionD(k) to this equation generates a solution(0,D(k)) to (16).
The corresponding eigenstate (15) of the combined system is

|�k〉 =
η∑
ν

D(k)
ν |�jν〉. (15′)

If relation (16′) has no nontrivial solution, one hasC(k) = 0. In this case eigenstates
(15′) whereD(k) is a solution to (18) are the only eigenstates of the combined system
corresponding to the eigenvalueεk = λj . In particular, if neither (16′) nor (18) has a
nontrivial solution,ε = λj is not an eigenvalue of the combined system.

If (16′) has a nontrivial solution, additional eigenstates are possible. For example,
if (16′) and (11) have in common the same nontrivial solutionC(k), relation (16) has a
solution(C(k), 0), which produces an eigenstate of a type (10′). In addition, relation (16)
may have solutions of a more general type(C(k),D(k)) whereC(k) �= 0 andD(k) �= 0.
Such solutions, if they exist, produce eigenstates of the general type (15).

The above two theorems exhaust all possibilities. All cardinal eigenvalues
εk /∈ {λi} of the combined eigenvalue equation are roots of the functionh(ε). Once a
particular rootεk of h(ε) is found, the corresponding eigenstate (eigenstates) is given by
equation (10) where vector (vectors)C(k) is a solution of (11). Concerning remaining
singular eigenvaluesεk ∈ {λi}, each such eigenvalue coincides with some unperturbed
eigenvalueλj , and all one has to do is to verify condition (13). This verification can be
simplified using relation (16′) and auxiliary relation (18). In particular, each nontrivial
solutionD(k) of (18) generates singular eigenstate (15′).

In the computer implementation of the above method, in order to find each par-
ticular rootεk of h(ε), one has to recalculate in an iterative way this function for many
different values ofε. In the caseP �= 0, one can substantially speed up this iteration if
the above relations are slightly modified [2]. After some algebra one finds that matrix
�(ε) can be written as

�(ε) = �0(ε)+ α + εβ, (19)
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where�0(ε),α andβ areρ × ρ matrices with matrix elements"0
sp(ε), αsp andβsp,

respectively

"0
sp(ε) =

n∑
i

c(i)sp

ε − λi

, c(i)sp = 〈χs |V− λiP|�i〉〈�i |V− λiP|χp〉, (20a)

αsp=
n∑
i

[
λi〈χs |P|�i〉〈�i |P|χp〉 − 〈χs |P|�i〉〈�i |V|χp〉 − 〈χs |V|�i〉〈�i |P|χp〉

]
,

βsp=
n∑
i

〈χs |P|�i〉〈�i |P|χp〉.
(20b)

Relations (7) and (11) accordingly transform into

h(ε) ≡ ∣∣�0(ε)+ α + A+ ε
(
β − Sa

)∣∣ = 0, (7′)

[
�0(εk)+ α + A+ εk

(
β − Sa

)]
C = 0. (11′)

The main difference between matrix elements"sp(ε) of the operator�(ε) and
matrix elements"0

sp(ε) of the operator�0(ε) is that those latter matrix elements contain
the unknownε only in the denominator of the sum (20a). This property is useful in
order to speed up the iterative recalculation of the functionh(ε) and thus to improve the
calculation of each particular rootεk of h(ε) [2].

In addition to the explicit expressions for the eigenvalues and eigenstates of the
combined system, approximate distribution of the eigenvaluesεk is also of interest. Due
to the interaction, eigenvaluesεk of the combined system shift relative to the unperturbed
eigenvaluesλi. Maximum possible shift of those eigenvalues is not arbitrary, and it is
mainly determined by the dimensionρ of the spaceXa

ρ . In the appendix we derive the
following.

Interlacing rule. Arrange unperturbed eigenvaluesλi(i = 1, . . . , n) and perturbed
eigenvaluesεk(k = 1, . . . , n + ρ) in a nondecreasing order. Then these eigenvalues
are interlaced according to

εi � λi � εi+ρ, i = 1, . . . , n. (21)

In particular, conditionλ1 � ε1+ρ implies that at mostρ perturbed eigenvalues
ε1, . . . , ερ can be smaller than the first unperturbed eigenvalueλ1. Similarly, condition
εn � λn implies that at mostρ perturbed eigenvaluesεn+1, . . . , εn+ρ can be larger than
the last unperturbed eigenvalueλn. Hence at leastn−ρ eigenvaluesεk must be confined
to the interval[λ1, λn].

In the above theorems, no assumption about the base{|χs〉} in the spaceXa
ρ was

made. Flexibility in the choice of this base can be utilised in order to cast obtained
relations in a more appropriate form for a given problem. Two such choices are partic-
ularly important. For some problems, it may be convenient to choose base{|χs〉} ortho-
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normalized according to〈χs |χp〉 = δsp. In this case operatorKa is a unit operator in
Xa

ρ(K
a = Ia). Another possible choice is{|χs〉} ≡ {|�s〉}. In this case one hasKa = Sa.

Other possible choices are less important.
Above theorems apply to generalised eigenvalue equations (1a)–(3a). All the cor-

responding relations substantially simplify if these equations are not completely gen-
eralised. The most important special case isP = 0. This allows for the unperturbed
eigenvalue equations (1a) and (2a) to be still of the most general type. Only the perturbed
equation (3a) is slightly restricted with this requirement. This eigenvalue equation is still
a generalised eigenvalue equation, though not of a most general type. One hasP = 0
in a special but highly important case when instead of generalised eigenvalue equa-
tions (1a)–(3a) one has standard eigenvalue equationsA|�s〉 = Es |�s〉,B|�i〉 = λi|�i〉
andH|�k〉 = εk|�k〉, respectively. Another slightly more general case is the problem of
molecular vibrations in harmonic approximation. This problem leads to the eigenvalue
equation of the type (3a) whereS = M is a diagonal matrix, and hence againP = 0.

4. Orthonormalization of eigenstates |�k〉
Eigenstates (10) and (15) of the combined system are not orthonormalized. Those

eigenstates can be easily orthonormalized according to (3d). This can be done using
orthonormality relation (2b) and propertiesV|χs〉,P|χs〉 ∈ Xb

n andV|�i〉,P|�i〉 ∈ Xa
ρ .

Concerning normalization, each eigenstate|�k〉 of the combined system can be
normalized according to

1

W
1/2
k

|�k〉, (22)

whereWk = 〈�k|S|�k〉. If |�k〉 is cardinal, it is given by relation (10) whileWk equals
(see appendix):

Wk =
ρ∑
sp

C(k)∗
s C(k)

p

[
n∑
i

〈χs |V− λiP|�i〉〈�i |V− λiP|χp〉
(εk − λi)2

− βsp+ Sa
sp

]
,

εk /∈ {λi}. (23a)

If |�k〉 is singular, it is given by relation (15) and quantityWk equals

Wk =
ρ∑
sp

C(k)∗
s C(k)

p

[
n∑

i(λi �=εk)

〈χs |V− λiP|�i〉〈�i |V− λiP|χp〉
(εk − λi)2

−
∑

i(λi �=εk)
〈χs |P|�i〉〈�i |P|χp〉 + Sa

sp

]
+

η∑
ν

D(k)∗
ν D(k)

ν

+
∑
sν

[
C(k)∗

s D(k)
ν 〈χs |P|�jν〉 + C(k)

s D(k)∗
ν 〈�jν |P|χs〉

]
, εk = λj ∈ {λi}. (23b)
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In particular, singular eigenstates (15′) are normalized according to

|�k〉 = 1

[∑ρ
ν D

(k)∗
ν D

(k)
ν ]1/2

η∑
ν

D(k)
ν |�jν〉. (15′′)

Consider now scalar products〈�k|S|�l〉 between normalized eigenstates|�k〉
and|�l〉. If those eigenstates are cardinal, one finds

〈�k|S|�l〉 = (WkWl)
−1/2

ρ∑
sp

C(k)∗
s C(l)

p

[
n∑
i

〈χs |V− λiP|�i〉〈�i |V− λiP|χp〉
(εk − λi)(εl − λi)

−βsp+ Sa
sp

]
, (24)

whereWk andWl are given by (23a). Slightly more complicated expressions are obtained
in the case of scalar products〈�k|S|�l〉 involving singular eigenstates.

In general, if the eigenstates|�k〉 and |�l〉 correspond to distinct eigenvalues
(εk �= εl), they are orthogonal to each other, i.e.,〈�k|S|�l〉 = 0. This orthogonality
follows from the hermiticity of operatorsA andS and from the fact thatS is positive
definite. In particular, if|�k〉 and |�l〉 are cardinal eigenstates corresponding to dis-
tinct eigenvalues, expression (24) should equal zero. Since suggested method does not
enforce orthogonality of calculated eigenstates in any explicit way, this opens the pos-
sibility to use this expression as a practical test for the numerical accuracy of those
eigenstates [2]. In each numerical calculation due to the finite precision arithmetic, there
is always some error accumulation. Therefore, calculated eigenstates|� ′′k 〉 slightly differ
from exact eigenstates|�k〉. If |� ′′k 〉 and|� ′′l 〉 are calculated eigenstates that correspond
to different eigenvalues (εk �= εl), they will be only approximately orthogonal to each
other, i.e., numerically one obtains〈� ′′k |S|� ′′l 〉 ≈ 0. One can use quantities〈� ′′k |S|� ′′l 〉
as an objective measure of the numerical accuracy of those eigenstates. Since cardinal
eigenstates are by far most numerous, relation (24) that refers to cardinal eigenstates is
sufficient to obtain relatively reliable estimates of the numerical accuracy of calculated
eigenstates [2].

If the perturbed eigenvalueεk is nondegenerate, one has only to normalize the cor-
responding eigenstate|�k〉 according to the relation (22) or (23), since such an eigen-
state is automatically orthogonal to all other eigenstates. However, if the eigenvalueεk
is degenerate, one has to make an explicit orthonormalization of all the corresponding
degenerate eigenstates. In the case of cardinal eigenvalues, this can be done using ex-
pression (24) for scalar products〈�k|S|�l〉 between degenerate eigenstates (εk = εl)

and any of the standard orthonormalization procedures, such as Gramm–Schmidt ortho-
normalization [4,5] or alike. In the case of singular eigenstates, one needs analogous
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expression for the scalar products〈�k|S|�l〉 between degenerate singular eigenstates.
One finds

〈�k|S|�l〉 = 1

(WkWl)1/2

{
ρ∑
sp

C(k)∗
s C(l)

p

[ ∑
i(λi �=εk)

〈χs |V− λiP|�i〉〈�i |V− λiP|χp〉
(εk − λi)2

−
∑

i(λi �=εk)
〈χs |P|�i〉〈�i |P|χp〉 + Sa

sp

]

+
∑
sν

[
C(k)∗

s D(l)
ν 〈χs |P|�jν〉 + C(l)

s D(k)∗
ν 〈�jν |P|χs〉

]

+
∑
ν

D(k)∗
ν D(l)

ν

}
. (25)

In the above expression|�k〉 and |�l〉 are normalized singular eigenstates corre-
sponding to the same eigenvalueεk = εl = λj .

Orthonormalization of degenerate eigenstates using relations (24) and (25) should
be numerically easy to perform, since the dimension of the corresponding degenerate
subspace is almost always much smaller then the dimension of the combined spaceXn+ρ .

5. Numerical considerations

An important practical aspect of the above approach is numerical efficiency. Since
cardinal solutions are by far the most numerous, main numerical load in solving per-
turbed eigenvalue equation involves the search for the root or roots of the functionh(ε).
After a particular rootεk of h(ε) is found, operation count to find the corresponding
eigenstate or eigenstates (10) is relatively small. We will now estimate those operation
counts. Most interesting is the case when the known systemSb is much larger than the
systemSa, i.e., whenn � ρ. To be more specific, we will assumeρ < n1/2. For the
sake of simplicity, eigenvalue equation (3a) with real matrices will be considered. In the
case of more general complex matrices various operation counts are slightly enhanced,
but qualitative order of magnitude estimates are the same as in the case of real matrices.

Operation count is usually expressed in terms of the number of flops needed to
perform a particular algorithm. A flop roughly constitutes the effort of doing a floating
point add, a floating point multiply, and a little subscribing [4]. Thus, the number of
flops approximately equals the number of multiplicative operations(×,÷). Therefore,
one can estimate operation count by estimating the number of multiplicative operations.

In order to initiate calculation of the roots ofh(ε), one has first to findρn ma-
trix elements〈χs |V|�i〉 = ∑n

r 〈χs |V|r〉〈r|�i〉 andρn matrix elements〈χs |P|�i〉 =∑n
r 〈χs |P|r〉〈r|�i〉. In a most general case involving real matrices this requires 2ρn2

multiplications,n multiplications per matrix element. However, in some cases this op-
eration count can be considerably smaller. For example, in the caseP = 0 one has
〈χs |P|�i〉 = 0, and this decreases operation count by factor two. Further, if the sys-
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tem Sb is very large, systemSa usually interacts in a direct way with only relatively
small fraction ofSb. In such cases, only relatively few base vectors|r〉 ∈ Xb

n of the
systemSb are involved in the interaction with the systemSa. The number of operations
required to calculate matrix elements〈χs |V|�i〉 and〈χs |P|�i〉 accordingly reduces, and
it is usually of the orderO(ρn). Finally, matrix elements〈χs |V|�i〉 and〈χs |P|�i〉 can
be given in an explicit analytic form. This may eliminate the need for the calculation
of those matrix elements. Thus, depending on a problem, this preparatory phase may
require anything from zero to 2ρn2 operations.

Once matrix elements〈χs |V|�i〉 and 〈χs |P|�i〉 are known, one has to find root
or rootsεk of the functionh(ε). This function is usually discontinuous in each point
ε ∈ {λi}, while in each intervalIr ≡ (λr, λr+1) it is continuous and analytic. Assume
that a root or roots ofh(ε) in the particular intervalIr is required. Most root finding meth-
ods start with some initial approximate rootε

(0)
k ∈ Ir , which is then iteratively improved.

This iteration requires multiple recalculation of the functionh(ε). At this point one may
use either expression (7) or expression (7′). Consider, for example, expression (7). Each
recalculation ofh(ε) using this expression involves calculation ofρ(ρ + 1)/2 functions
"sp(ε) followed by calculation of the determinant (7). Calculation of each function
"sp(ε) requiresn multiplications andn divisions, while calculation of theρ × ρ deter-
minant requiresρ3/3 operations [4,5]. One finds that in order to calculate functionh(ε)

for a particular value ofε one needs approximatelyρ(ρ + 2)n+ ρ3/3≈ ρ(ρ + 2)n op-
erations. If the number of iterative recalculations of a functionh(ε) is I tk, this amounts
to Nk ≈ I tkρ(ρ + 2)n operations required to obtain rootεk of h(ε). The number of iter-
ationsI tk depends on many factors, in particular on the choice of the initial approximate
root ε(0)k . However, this number is on average essentially independent on the dimen-
sionsn andρ [3,6]. Operation count to obtain a single root ofh(ε) is hence of the order
≈ O(ρ2n). The same order of magnitude estimate is obtained if instead of the expres-
sion (7) one uses expression (7′). There are however some differences. In the case of the
relation (7′), in addition to the calculation of matrix elements〈χs |V|�i〉 and〈χs |P|�i〉,
initial preparatory phase requires also calculation of coefficientsc(i)sp and of matrix el-
ementsαsp and βsp. Calculation of those quantities can be done with approximately
ρn(2ρ + 3) ≈ 2ρ2n additional operations. This slightly increases operation count for
the initial preparatory phase. Further, in each iterative recalculation ofh(ε), instead of
ρ(ρ + 1)/2 functions"sp(ε) one has to calculateρ(ρ + 1)/2 functions"0

sp(ε). Calcu-
lation of each function"0

sp(ε) requires onlyn operations, since coefficientsc(i)sp do not
depend onε. This decreases operation count for the calculation of each particular root
of h(ε) approximately by factor two. In addition, using relation (7′) substantial further
decrease in the operation count can be obtained [2]. Nevertheless, the total operation
count to produce a single root ofh(ε) is still of the order≈ O(ρ2n).

Once a rootεk of h(ε) is obtained, calculation of the corresponding eigenstate
requires approximatelyρ3/3 operations to solve (11) followed byO(ρn) operations to
construct the corresponding eigenstate (10). If normalization is required, calculation of
the quantityWk according to (23a) requires additionalO(ρn) operations. Forρ < n1/2

this adds to approximatelyO(ρn) operations per normalized eigenstate.
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In conclusion, in order to find the root or roots ofh(ε) there is initial prepara-
tory phase which requires, depending on the problem, anything from zero toO(ρn2)

operations. After this is done, calculation of each particular rootεk of h(ε) requires
approximatelyO(ρ2n) operations. Onceεk is known, calculation of the corresponding
normalised eigenstate requiresO(ρn) operations. If all eigenvalues and eigenstates are
needed, total operation count is of the orderO(ρ2n2). This is a rough order of magni-
tude estimate. More precise estimate depends on many details, such as selection of the
relation (7) or (7′) to calculate functionh(ε), average number of iterations required to
obtain a single root of this function, details of the particular algorithm implementation,
etc. Nevertheless, it shows that ifρ ≈ n1/2 the operation count to obtain all eigenvalues
and/or eigenstates of the combined eigenvalue equation is of the orderO(n3). In compar-
ison, standard diagonalization methods such as Householder, Givens or Jacoby require
alsoO(n3) operations in order to calculate all eigenvalues and/or eigenstates of a nor-
mal eigenvalue equation [4,5]. In the case of generalised eigenvalue equation, one has
first to transform such an equation into a normal eigenvalue equation in order to solve
it by one of the standard diagonalization methods. IfS is symmetric positive definite,
this transformation is most efficiently done by Cholesky decomposition [4]. One of the
presently best algorithms for the solution of the generalised eigenvalue equation involv-
ing real Hermitian matrices combines Cholesky decomposition with the symmetric QR
algorithm [4]. Total operation count of this algorithm is 7n3 [4].

Above analysis shows that, as far as numerical efficiency of the suggested method
is concerned, the break-even point with standard diagonalization methods is approxi-
mately atρ ≈ Cn1/2, where constantC depends on the details of algorithm implemen-
tation. If ρ � n1/2, and if all the eigenvalues and/or eigenstates are required, suggested
method should be numerically more efficient than standard diagonalization methods.

In some cases only a single eigenvalue and/or eigenstate is required. Standard diag-
onalization methods are not particularly suitable for such problems. Some other method,
such as power method, the Lanczos method, the Davidson algorithm, or the perturbation
expansion is usually more efficient. Operation count for the power method and Lanczos
method is higher thenO(n2) but less thanO(n3) [4,5]. Lanczos method is substan-
tially more efficient than power method. However, both methods are suitable only for
few extreme eigenvalues, and those methods are again of the orderO(n3) if an arbitrary
eigenvalue and/or eigenstate is required. Davidson’s algorithm has also an operation
count less thanO(n3) if only a few solutions are required [7]. This algorithm is usually
a method of choice in a large scale CI calculations [7]. However, this method highly
relies on the scarcity of the Hamiltonian. Finally, operation count for the perturbation
expansion is less thanO(n3) only if the perturbation is so small that higher expansion
terms can be neglected, or if the matrices involved are of some special kind, such as
sparse matrices or alike. Thus, all those methods are of the order higher thanO(n2).
In addition, those methods apply only to a normal eigenvalue equation. In a case of
a generalised eigenvalue equation, there is an additional operation count of the order
O(n3) associated with the construction of the corresponding normal eigenvalue equa-
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tion. Hence, in this case one has againO(n3) operations, even if a single eigenvalue
and/or eigenstate is required.

Suggested method is more efficient. Most unfavourable is the case when one has
to calculate matrix elements〈χs |V|�i〉 and〈χs |P|�i〉 and when in addition most of the
matrix elements〈χs |V|r〉 and〈χs |P|r〉 are nonzero. In this case, operation count to find
a single eigenvalue and/or eigenstate is dominated by the calculation of those matrix
elements, which is of the orderO(ρn2). This is less thanO(n3) especially ifρ is small,
but still at leastO(n2). However, if the formation of the above matrix elements does not
require as many asO(ρn2) operations, this operation count can be significantly smaller.
For example, if matrix elements〈χs |V|r〉 and〈χs |P|r〉 are sparse, or if matrix elements
〈χs |V|�i〉 and〈χs |P|�i〉 are a priori known, initial operation count required to construct
matrix elements〈χs |V|�i〉 and〈χs |P|�i〉 can be as low asO(ρn) or even smaller. In this
case, operation count to obtain a particular eigenvalue and/or eigenstate is dominated by
the calculation of the corresponding root ofh(ε) which is of the orderO(ρ2n). Hence if
ρ � n1/2 operation count to obtain a single eigenvalue and/or eigenstate by this method
can be substantially smaller thanO(n2).

For the special caseρ = 1 suggested method and the above estimates were suc-
cessfully verified by the computer program written by the author [6]. In this program,
random matrices of the ordern = 100 up to includingn = 5 · 106 were considered [6].

6. System Sa in the interaction with a known system Sb as a nonlinear
eigenvalue problem

Relations obtained in theorems 1 and 2 can be cast into a more familiar form. Each
eigenstate|�k〉 of the combined system is a linear combination

|�k〉 =
∣∣�a

k

〉+ ∣∣�b
k

〉
, (26)

where|�a
k 〉 ∈ Xa

ρ and |�b
k 〉 ∈ Xb

n are projections of this eigenstate on subspacesXa
ρ

andXb
n, respectively. If|�k〉 is a normalized cardinal eigenstate of the combined system,

one has

∣∣�a
k

〉=W
−1/2
k

ρ∑
s

C(k)
s |χs〉, (27a)

∣∣�b
k

〉= n∑
i

〈�i |V− εkP|�a
k 〉

εk − λi

|�i〉, εk /∈ {λi}, (27b)

whereC(k) is a nontrivial solution to (11), whileWk is given by (23a).
All properties of the systemSa alone, such as expectation values of various ob-

servables that refer to this system, can be deduced from the state|�a
k 〉. Similarly, all

properties of the systemSb can be deduced from the state|�b
k 〉. Only those properties

that refer to both systems require the knowledge of the complete eigenstate|�k〉. Ac-
cordingly, the state|�a

k 〉 contains a full description of the systemSa, while the state
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|�b
k 〉 contains a full description of the systemSb. Note that neither|�a

k 〉 nor |�b
k 〉 is

normalized. Only a combined eigenstate|�k〉 is normalized.
Further and according to (27b), the state|�b

k 〉 ∈ Xb
n is fully determined by the state

|�a
k 〉 ∈ Xa

ρ and by the corresponding eigenvalueεk. Thus, the state|�a
k 〉 that describes

systemSa and the corresponding eigenvalueεk completely determines the eigenstate
|�k〉 of the combined systemS.

Using (2a) and (2b) one can express the inverse of(εSb − B) in the spaceXb
n as

(
εSb − B

)−1 =
n∑
i

|�i〉〈�i |
ε − λi

, ε /∈ {λi}. (28)

Expression (27b) can be hence written in a compact form∣∣�b
k

〉 = (εkSb − B
)−1

(V− εkP)
∣∣�a

k

〉
. (27b′)

Consider now relations (7) and (11). Those relations combine into a single equa-
tion

[�(εk)+ A]∣∣�a
k

〉 = εkSa
∣∣�a

k

〉
, (29)

where�(ε),A andSa are operators that act in the spaceXa
ρ and that in the base{|χs〉}

have matrix elements (8) and (9), respectively. Using (28) operator�(ε) can be ex-
pressed in a compact form

�(ε) = (V− εP)
(
εSb − B

)−1
(V− εP). (8a′)

In a similar way relations (7′) and (11′) combine into[
�0(εk)+ α + A

]∣∣�a
k

〉 = εk
(
Sa − β)∣∣�a

k

〉
. (29′)

Operators�0(ε),α andβ can be also written in a compact form

�0(ε) = (V− PS−bB
)(
εSb − B

)−1(
V− BS−bP

)
, (20a′)

α = PS−bBS−bP− VS−bP− PS−bV, β = PS−bP, (20b′)

whereS−b ≡ (Sb)−1 = ∑
i |�i〉〈�i | is inverse ofSb in the spaceXb

n, i.e., S−bSb =
SbS−b = Ib.

Relations (29) and (29′) are nonlinear eigenvalue equations in the spaceXa
ρ . Con-

sider, for example, relation (29). Solutions of this equation are all eigenvaluesεk /∈ {λi}
of a combined systemS and the corresponding eigenstates|�a

k 〉 that describe systemSa.
According to (27b), those eigenvalues and eigenstates determine projections|�b

k 〉 and
hence corresponding eigenstates|�k〉 of the combined system. Thus equation (29) is
an equation that explicitly describes systemSa subject to the interaction with the sys-
temSb, but implicitly it describes the entire interacting systemS. All operators in this
equation act in theρ-dimensional spaceXa

ρ . OperatorsA andSa alone describe the sys-
temSa in the absence of the interaction with the systemSb. The entire interaction with
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this system and influence of this system on the systemSa is succinctly expressed by the
operator�(ε).

Eigenvalue equation (29) is aρ × ρ eigenvalue equation. In this respect, it is sim-
ilar to the eigenvalue equation (1a) that describes the systemSa alone and that is also a
ρ×ρ eigenvalue equation. Formally, eigenvalue equation (29) is a perturbed eigenvalue
equation (1a), where the role of the perturbation is assumed by the operator�(ε). How-
ever, though this eigenvalue equation refers only to theρ-dimensional spaceXa

ρ , it has
as a solution all cardinal eigenvalues and eigenstates of the combined system. Hence,
this equation can have as many as(ρ + n) distinct eigenvalues and eigenstates. This is
possible since (29) is not a linear eigenvalue equation. The eigenvalueεk of this equation
appears on the right-hand side of (29), but it also appears as an argument of the operator
�(ε) on the left-hand side of this equation. This equation is hence nonlinear, and it can
have much more solutions than the dimensionρ of the spaceXa

ρ . Therefore, eigenstates
|�a

k 〉 of (29) are usually not orthogonal to each other. If this equation has more solutions
than the dimensionρ of the spaceXa

ρ , which is almost always the case, corresponding
eigenstates are linearly dependent. Orthonormalized and linearly independent are only
complete eigenstates|�k〉 that describe the combined systemS. Note, however, that if
εk /∈ {λi} is a degenerate eigenvalue of the combined system, and if|�kν〉 are the cor-
responding (linearly independent) eigenstates, then|�a

kν〉 are also linearly independent
(see appendix).

Consider the effect of the slow inclusion of the interaction between systemsSa

andSb. In the absence of the interaction, there is a sharp separation between those two
systems. There exist a complete set{|�k〉} of the eigenstates of the combined system
such that each eigenstate|�k〉 refers either entirely to the subsystemSa or entirely to
the subsystemSb. One arrives at the same conclusion formally from the eigenvalue
equation (29). Namely, ifV = P = 0 one has�(ε) = 0 and this equation reduces
to the eigenvalue equation (1a). One thus obtainsρ linearly independent eigenstates
|�a

k 〉 ≡ |�s〉 ∈ Xa
ρ . SinceV = P = 0, (27) implies |�b

k 〉 = 0. Hence|�k〉 = |�a
k 〉 are

ρ eigenstates of the combined system. Remainingn eigenstates of this system coincide
with unperturbed eigenstates|�i〉 ∈ Xb

n. By definition, those eigenstates are singular
(εi = λi), and therefore they are not obtained as a solution of the equation (29) that
produces all cardinal and may produce only some singular eigenstates.

If the interaction is nonzero, one has�(ε) �= 0 and there is no more clear separation
between systemsSa andSb. Almost every eigenstate|�k〉 of the combined system has
in this case a nonvanishing component|�a

k 〉 ∈ Xa
ρ as well as a nonvanishing component

|�b
k 〉 ∈ Xb

ρ . In addition, interaction usually shifts almost every unperturbed eigenvalue,
and therefore large majority of the perturbed eigenvaluesεk is cardinal (εk /∈ {λi}). If a
particular unperturbed eigenvalue is not effected by the interaction, this is due either to
some symmetry, or to some other special condition. Since all cardinal eigenvalues are
solutions of the equation (29), with the inclusion of the interaction, however small, this
equation suddenly acquires a huge number of solutions. However, if the interaction is
small, either the component|�a

k 〉 ∈ Xa
ρ , or the component|�b

k 〉 ∈ Xb
ρ of the eigenstate

|�k〉 will be usually dominant. If the component|�a
k 〉 is dominant, it is proper to inter-
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pret the state|�k〉 as the state describing systemSa subject to the perturbation by the
systemSb. However, if the component|�b

k 〉 is dominant, it is proper to interpret the state
|�k〉 as the state describing systemSb perturbed by the interaction with the systemSa.
Thus in most cases one can still associate each eigenstate|�k〉 of the combined system
either with the systemSa, or with the systemSb. With the increase of the interaction,
this association becomes more blurred and it is more difficult to associate the state|�k〉
either withSa or with Sb.

Above relations apply to the general caseP �= 0. If P = 0 those relations simplify.
In particular, relations (27) reduce to

∣∣�a
k

〉=W
−1/2
k

ρ∑
s

C(k)
s |χs〉, (30a)

∣∣�b
k

〉= n∑
i

〈�i |V|�a
k 〉

εk − λi

|�i〉, (30b)

while relation (23a) simplifies to

Wk =
ρ∑
sp

C(k)∗
s C(k)

p

[
n∑
i

〈χs |V|�i〉〈�i |V|χp〉
(εk − λi)2

+ Sa
sp

]
, εk /∈ {λi}. (31a)

For completeness, note that ifP = 0 relation (23b) that refers to singular eigen-
states simplifies to

Wk =
ρ∑
sp

C(k)∗
s C(k)

p

[
n∑

i(λi �=εk)

〈χs |V|�i〉〈�i |V|χp〉
(εk − λi)2

+ Sa
sp

]
+

η∑
ν

D(k)∗
ν D(k)

ν ,

εk = λj ∈ {λi}. (31b)

In addition, one obtainsα = 0,β = 0 and�(ε) ≡ �0(ε). In particular,

"sp(ε) ≡ "0
sp(ε) =

n∑
i

〈χs |V|�i〉〈�i |V|χp〉
ε − λi

, ε /∈ {λi}. (8a′)

Relation (29′) hence reduces to the relation (29).
In a metrics induced by the positive definite operatorS one can define the proba-

bility wa
k to find the eigenstate|�k〉 in the systemSa

wa
k =

〈
�a

k

∣∣S∣∣�a
k

〉 = 1

Wk

ρ∑
sp

C(k)∗
s C(k)

p

〈
χs

∣∣Sa
∣∣χp

〉
(32a)

as well as the probabilitywb
k to find this eigenstate in the systemSb:

wb
k =

〈
�b

k

∣∣S∣∣�b
k

〉 = n∑
i

|〈�i |V|�a
k 〉|2

(εk − λi)2
. (32b)
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If the base vectors|χs〉 in Xa
ρ are chosen to coincide with the eigenstates|�s〉,

expression (32a) simplifies to

wa
k =

1

Wk

ρ∑
s

C(k)∗
s C(k)

s . (32a′)

From (32) one finds

wa
k + wb

k = 1. (33)

This relation must be satisfied in order for quantitieswa
k andwb

k to be interpreted as
probabilities. In the general caseP �= 0 relation (33) can be satisfied only with an arti-
ficial definitions of probabilitieswa

k andwb
k . Namely, one has〈�a

k |S|�b
k 〉 = 〈�a

k |P|�b
k 〉

and if P �= 0 components|�a
k 〉 and |�b

k 〉 of |�k〉 are in general not orthogonal to each
other in the metrics defined by the operatorS. As a consequence,wa

k+wb
k �= 1 and quan-

titieswa
k andwb

k cannot be interpreted as probabilities. One can avoid this drawback by
using the metrics induced by the operatorS′ = Sa + Sb instead of the metrics induced
by the operatorS. In this metrics, one can define quantitieswa

k
′ andwb

k
′ that satisfy

wa
k
′ + wb

k
′ = 1. However, there is a drawback to this definition as well. Namely, in this

metrics eigenstates|�k〉 and |�l〉 that correspond to mutually distinct eigenvalues sat-
isfy 〈�k|S′|�l〉 = −〈�k|P|�l〉. Hence, in this metrics those eigenstates are usually not
orthogonal to each other. The same applies to the metrics induced by the unit operatorI.
All those problems are avoided ifP = 0.

Until now, we have considered cardinal solutions to the combined system. Those
solutions are most numerous and most important. In the case of singular solutions
slightly more complicated relations are obtained. Component|�a

k 〉 ∈ Xa
ρ of a normal-

ized eigenstate|�k〉 is still given by the relation (27a) where the quantityWk is now
given by (23b). However, component|�b

k 〉 ∈ Xb
n of this eigenstate is

∣∣�b
k

〉 = n∑
i(λi �=εk)

∑ρ
s 〈�i |V− εkP|�a

k 〉
εk − λi

|�i〉 +
∣∣�jb

k

〉
, εk = λj , (34)

where|�jb

k 〉 = W
−1/2
k

∑
ν D

(k)
ν |�jν〉. In addition, relations (13) and (16) combine into

[
�(εk)+ A

]∣∣�a
k

〉+ [V− εkP]∣∣�jb

k

〉 = εkSa
∣∣�a

k

〉
, (35a)

〈�jν |V− εkP
∣∣�a

k

〉 = 0, εk = λj . (35b)

Unlike relation (29) that involves only the state|�a
k 〉 ∈ Xa

ρ which refers to the

systemSa alone, relations (35) contain also the state|�jb

k 〉 ∈ Xb
n that refers to the sys-

temSb. Those relations thus partially mix spacesXa
ρ andXb

n. This is less appealing than
elegant relations (29) and (29′) that involve only the spaceXa

ρ . However, this drawback
is highly compensated by the fact that there are usually very few singular solutions.
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7. Generalisation to the time dependent eigenvalue equation

Relation (3a) is time-independent. The above method can be easily generalised to
the time-dependent eigenvalue equation

ih̄
∂

∂t
S
∣∣�(t)

〉 = H
∣∣�(t)

〉
. (36)

An arbitrary solution|�(t)〉 to this equation is a linear combination

∣∣�(t)
〉 = n+ρ∑

k

ck|�k〉e−iεkt/h̄, (37)

where|�k〉 are orthonormalized eigenstates of the time independent eigenvalue equa-
tion (3a),εk are the corresponding eigenvalues andck are unknown coefficients to be
determined from the initial conditions. In analogy to (26) one has∣∣�(t)

〉 = ∣∣�a(t)
〉+ ∣∣�b(t)

〉
, (38)

where |�a(t)〉 ∈ Xa
ρ and |�b(t)〉 ∈ Xb

n are projections of|�k(t)〉 on subspacesXa
ρ

andXb
n, respectively. Hence

∣∣�a(t)
〉 = n+ρ∑

k

ck
∣∣�a

k

〉
e−iεkt/h̄,

∣∣�b(t)
〉 = n+ρ∑

k

ck
∣∣�b

k

〉
e−iεkt/h̄. (39)

Eigenvaluesεk and eigenstates|�a
k 〉 can be obtained as solutions of relations (29)

and (35). Onceεk and |�a
k 〉 are known, projection|�b

k 〉 of the eigenstate|�k〉 on the
spaceXb

n can be easily derived. Above relations hence provide a general method for
the solution of the time dependent eigenvalue equation (36). In general, summations in
expressions (37) and (39) involve cardinal as well as singular eigenstates|�k〉. However,
the number of cardinal eigenstates is usually much larger than the number of singular
eigenstates. Hence, for largen one can in most cases neglect the contribution of singular
eigenstates.

One is usually interested in the time evolution of a state|�(t)〉 that is att = 0
prepared in a well-defined state|�(0)〉. In particular, if|�(0)〉 ≡ |�s〉 ∈ Xa

ρ , at some
latter time t this state will evolve in the state|�s(t)〉 /∈ Xa

ρ . Similarly, if |�(0)〉 ≡
|�i〉 ∈ Xb

n, at some later timet this state will evolve in the state|�i(t)〉 /∈ Xb
n.

We will now consider in more details time evolution of the states|�s(t)〉 and
|�i(t)〉. For the sake of simplicity, we will restrict our consideration to the caseP = 0.
Generalisation to the caseP �= 0 is straightforward, and can be obtained along the same
lines.

If P = 0 then (see appendix)

∣∣�s(t)
〉 = n+ρ∑

k

1

W
1/2
k

[
ρ∑
p

C(k)∗
p

〈
χp

∣∣Sa
∣∣�s

〉]|�k

〉
e−iεkt/h̄. (40)
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It is convenient to choose base vectors|χp〉 to coincide with the eigenstates|�p〉.
With such a choice (40) simplifies to

∣∣�s(t)
〉 = n+ρ∑

k

C(k)∗
s

W
1/2
k

|�k〉e−iεk t/h̄. (41a)

Hence

∣∣�a
s (t)

〉 = n+ρ∑
k

C(k)∗
s

W
1/2
k

∣∣�a
k

〉
e−iεkt/h̄,

∣∣�b
s (t)

〉 = n+ρ∑
k

C(k)∗
s

W
1/2
k

∣∣�b
k

〉
e−iεkt/h̄. (41b)

We emphasise that relations (41) contain implicit assumption that all relevant quan-
tities are expressed in the base{|�s〉}. In particular, if|�k〉 is cardinal, the vectorC(k) is
a solution of (11) where matrices�(εk),A andSa are expressed in the base{|�s〉}. In
this base operatorsA andSa are diagonal, and one hasAsp= Esδsp andSa

sp= δsp.
Since the states|�s〉 ≡ |�s(0)〉 form a base inXa

ρ , relations (40) and (41) deter-
mine time evolution of each state|�(t)〉 that is att = 0 prepared in the systemSa.

In a similar way one finds time evolution of states|�i(t)〉:
∣∣�i(t)

〉=∑
k

1

W
1/2
k

∑ρ
s 〈χs |V|�i〉C(k)∗

s

εk − λi

|�k〉e−iεk t/h̄, λi /∈ {εk}, (42a)

∣∣�jν(t)
〉= ∑

k(εk �=λj )

1

W
1/2
k

∑ρ
s 〈χs |V|�jν〉C(k)∗

s

εk − λj

|�k〉e−iεkt/h̄+
[ ∑

k(εk=λj )

D(k)∗
ν

W
1/2
k

|�k〉
]
e−iλj t/h̄,

λj ∈ {εk}. (42b)

Relation (42a) applies to the case when unperturbed eigenvalueλi is not a singular
eigenvalue if the combined system, while (42b) applies to the case whenλj is a singular
eigenvalue of the combined system. In this latter case one has an extra contribution to
the states|�jν(t)〉 that involves singular eigenstates|�k〉 with εk = λj . As discussed
above, the contribution of such eigenstates is usually negligible, especially for largen.

Since the states|�i〉 ≡ |�i(0)〉 form a base inXb
ρ , relations (42) determine time

evolution of each state|�(t)〉 that is att = 0 prepared in the systemSb. Relations (41)
and (42) hence determine time evolution of an arbitrary state|�(t)〉 ∈ Xn+ρ .

From the above relations one easily obtains all necessary probability ampli-
tudes. For example, if inXa

ρ the base{|χs〉} ≡ {|�s〉} is used, probability ampli-
tudes〈�p|S|�s(t)〉 ≡ 〈�p|S|�a

s (t)〉(p = 1, . . . , ρ) and〈�i|S|�s(t)〉 ≡ 〈�i |S|�b
s (t)〉

(i = 1, . . . , n) are found to be

〈�p|S
∣∣�s(t)

〉 = ρ+n∑
k

1

Wk

C(k)∗
s C(k)

p e−iεkt/h̄, (43)
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〈�i |S
∣∣�s(t)

〉=∑
k

C(k)∗
s

Wk

∑ρ
p 〈�i|V|�p〉C(k)

p

εk − λi

e−iεkt/h̄, λi /∈ {εk}, (44a)

〈�jν |S
∣∣�s(t)

〉= ∑
k(εk �=λj )

C(k)∗
s

Wk

∑ρ
p 〈�jν |V|�p〉C(k)

p

εk − λj

e−iεkt/h̄

+
[ ∑

k(εk=λj )

C(k)∗
s D(k)

ν

Wk

]
e−iλj t/h̄, λj ∈ {εk}. (44b)

Probability amplitudes〈�p|S|�s(t)〉 refer to the spaceXa
ρ and they determine time

evolution of a systemSa. On the other hand, probability amplitudes〈�i |S|�s(t)〉 refer
to the spaceXb

n and they determine transition probabilities for a state that is at timet = 0
prepared in a systemSa to be found at timet in some state|�i〉 of a systemSb.

For t = 0 above relations in conjunction with orthonormality relation (1b) and
orthogonality condition〈�i |S|�s〉 ≡ 〈�i |S|�s(0)〉 = 0 imply

〈�p|S|�s〉 =
ρ+n∑
k

1

Wk

C(k)∗
s C(k)

p = δsp, (45)

〈�i |S|�s〉 =
∑
k

C(k)∗
s

Wk

∑ρ
p 〈�i |V|�p〉C(k)

p

εk − λi

= 0, λi /∈ {εk}, (46a)

〈�jν |S|�s〉 =
∑

k(εk �=λj )

C(k)∗
s

Wk

∑ρ
p 〈�jν |V|�p〉C(k)

p

εk − λj

+
[ ∑

k(εk=λj )

C(k)∗
s D(k)

ν

Wk

]
= 0, λj ∈ {εk}. (46b)

Probability amplitudes〈�s |S|�i(t)〉 and〈�j |S|�i(t)〉 can be derived in a similar
way.

8. Example of the interaction of two quantum systems

In order to illustrate the above method, consider the interaction of a two-
dimensional systemSa

2 with a known three-dimensional systemSb
3.

Let the systemSa
2 be described by the generalised eigenvalue equation (1a) where

in a base{|χs〉} one has

A =
[

1 −0.5
−0.5 0

]
, Sa =

[
1 0.3

0.3 1

]
. (47)
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Let the systemSb
3 be described by the generalised eigenvalue equation (2a) where

in a base{|r〉}

B =

1 2 3

2 2 1
3 1 5


 , Sb =


 1 0.5 0.2

0.5 1.2 0.5
0.2 0.5 1.3


 . (48)

Let further the combined systemS5 that includes the interaction between systems
Sa

2 andSb
3 be described by the generalised eigenvalue equation (3a) where in a base

{|r〉, |χs〉}

H =
[

B IbVIa

IaVIb A

]
, S =

[
Sb IbPIa

IaPIb Sa

]
(49a)

and where generalised interaction(V,P) is given by

IaVIb =
[

1 2 −1
1 2 3

]
, IaPIb =

[
0.3 −0.5 0.2
0.3 0.1 −0.4

]
. (49b)

One finds that this combined system has eigenvalues

ε1 = −2.32918, ε2 = −1.50057, ε3 = 0.06038,

ε4 = 4.35986, ε5 = 60.42988.
(50a)

The corresponding eigenstates are

|�1〉 =




1.11912
−0.49548
−0.39826
−0.51397
0.05630


, |�2〉 =




0.35630
0.29638
−0.02665
−0.37694
−0.73890


, |�3〉 =




0.53374
−0.49000
0.20859
0.40996
−0.57247


,

|�4〉 =




0.07052
0.63770
0.27950
0.44679
0.34263


, |�5〉 =




1.17903
−2.38652
1.73945
−2.44302
1.36072


.

(50b)

This can be verified by inserting those eigenvalues and eigenstates in the eigenvalue
equation (3a) with matricesH andS as given by (49). One can also verify that eigenstates
(50b) are orthonormalized according to (3d).

We will now solve the same eigenvalue equation by the above suggested method.
In this method, in order to solve combined eigenvalue equation, one has to know the
solution of the eigenvalue equation (2a) describing the systemSb

3. This system has three
eigenvalues and three corresponding eigenstates orthonormalized according to (2b). One
finds

λ1 = −1.66138, λ2 = 1.89610, λ3 = 5.20405, (51a)
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|�1〉 =

 0.99832
−0.56029
−0.32137


 , |�2〉 =


 0.23961

0.86544
−0.26545


 , |�3〉 =


 0.45738
−0.39004
0.86160


 . (51b)

We first notice that unperturbed eigenvaluesλi and perturbed eigenvaluesεk satisfy
interlacing rule. For example,ε1 = −2.32918< λ1 = −1.66138< ε3 = 0.06038 in
accord with (21), etc.

From (49b) and (51b) one derives matrix elements〈χs |V|�i〉 ≡ 〈us |�i〉 and
〈χs |P|�i〉 ≡ 〈xs |�i〉:

〈u1|�1〉 = 0.19912, 〈u2|�1〉 = −1.08638,

〈u1|�2〉 = 2.23594, 〈u2|�2〉 = 1.17415,

〈u1|�3〉 = −1.18430, 〈u2|�3〉 = 2.26211,

〈x1|�1〉 = 0.51537, 〈x2|�1〉 = 0.37202,

〈x1|�2〉 = −0.41393, 〈x2|�2〉 = 0.26461,

〈x1|�3〉 = 0.50456, 〈x2|�3〉 = −0.24643.

(52)

One can now proceed using relation (11) that has a nontrivial solution if the de-
terminanth(ε) given by (7) is zero. Equivalently, one can use relation (11′) that has a
nontrivial solution if determinanth(ε) as expressed by relation (7′) is zero. For the sake
of illustration we will apply this latter approach.

Using relations (20) and (52) one obtains matrix elements of matrices�0(ε),α

andβ

"0
11(ε)=

1.11373

ε − λ1
+ 9.12516

ε − λ2
+ 14.51632

ε − λ3
,

"0
22(ε)=

0.21932

ε − λ1
+ 0.45215

ε − λ2
+ 12.56382

ε − λ3
, (53a)

"0
12(ε)≡"0

21(ε) =
−0.49423

ε − λ1
+ 2.03125

ε − λ2
− 13.50483

ε − λ3
,

α11 = 4.04931, α22 = 1.52069, α12 = α21 = −2.22630,

β11 = 0.69151, β22 = 0.26914, β12 = β21 = −0.04214.
(53b)

Inserting (47) and (53) into (7′) one obtains

h(ε) ≡
∣∣∣∣∣
"0

11(ε)+ 5.04931− 0.30849ε "0
12(ε)− 2.72630− 0.34214ε

"0
21(ε)− 2.72630− 0.34214ε "0

22(ε)+ 1.52069− 0.73086ε

∣∣∣∣∣ = 0. (54)

Roots of this equation are cardinal eigenvalues of the combined system. One easily
verifies that eigenvalues (50a) satisfy (54). In addition, one finds that there are no other
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solutions to (54). This shows that relation (7′) produces correct eigenvalues of the com-
bined system. Moreover, in this particular case the functionh(ε) has exactly five roots.
Since the combined system is five-dimensional, those are all eigenvalues of this system,
and there are no singular solutions.

Once the particular eigenvalueεk is found as a root ofh(ε), the corresponding
cardinal eigenstate (10) is determined by the column vectorC(k), nontrivial solution to
the matrix equation (11′):[

"0
11(εk)+ 5.04931 "0

12(εk)− 2.72630

"0
21(εk)− 2.72630 "0

22(εk)+ 1.52069

](
C1

C2

)

= εk

[
0.30849 0.34214

0.34214 0.73086

](
C1

C2

)
. (55)

Using obtained eigenvaluesεk one finds:

C(1) =
(

1
−0.10954

)
, C(2) =

(
1

1.96028

)
, C(3) =

(
1

−1.39639

)
,

C(4) =
(

1
0.76687

)
, C(5) =

(
1

−0.55698

)
.

(56)

Inserting above vectors into (10) and using (50a), (51a) and (52) one obtains, up
to the normalisation constant, eigenstates (50b) of the combined system. One can also
calculate quantitiesWk according to (23a) and normalize those eigenstates. One thus
obtains eigenstates (50b) up to the sign. This shows that suggested method produces
correct cardinal eigenstates of the combined system.

From a numerical point of view above example is not very interesting. It can be
solved more efficiently by many other methods. However, it illustrates main features of
the suggested method, its advantageous and possible drawbacks.

Eigenvalue equation (55) that describes the systemSa
2 subject to the interaction

(49b) with the known systemSb
3 is a 2× 2 eigenvalue equation. In this example, sys-

temSb
3 was relatively small three-dimensional system. However, dimensionn of this

system can be arbitrary large. All cardinal solutions of the combined system will be still
the solution of the 2× 2 eigenvalue equation that is similar to the eigenvalue equation
(55). If singular eigenvalues exist, dimension of the corresponding eigenvalue equation
will be slightly larger than 2× 2, but still much smaller than the dimension of the com-
bined spaceXn+2. Thus if the dimension of the systemSb is large enough, this method
will be numerically much more efficient than other known methods.

9. Conclusion

Quantum systemS consisting of subsystemsSa andSb is considered. With a sys-
temSa is associated aρ-dimensional spaceXa

ρ and with a systemSb is associated an
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n-dimensional spaceXb
n that is orthogonal to the spaceXa

ρ . SystemSa alone is de-
scribed by the generalisedρ×ρ eigenvalue equationA|�s〉 = EsSa|�s〉(s = 1, . . . , ρ),
where A and Sa are Hermitian operators, whileSa is, in addition, positive definite.
Similarly, systemSb alone is described by the generalisedn × n eigenvalue equation
B|�i〉 = λiSb|�i〉(i = 1, . . . , n) whereB andSb are Hermitian operators, whileSb is,
in addition, positive definite. It is assumed that the solution to this system (eigenval-
uesλi and the corresponding eigenstates|�i〉) is known. The combined quantum sys-
temS = Sa⊕Sb is described by a generalised eigenvalue equation[A+ B+ V]|�k〉 =
εk[Sa + Sb + P]|�k〉, where operatorsV andP describe generalised interaction between
subsystemsSa andSb. Formulation in terms of generalised eigenvalue equations allows
for a most general treatment of the combined systemS and its subsystemsSa andSb.

New method for the solution of the combined system is derived. In this method
one distinguishes cardinal (εk /∈ {λi}) and singular (εk ∈ {λi}) eigenvalues and the
corresponding eigenstates of the combined system. Efficiency of this method does not
depend on the magnitude of the interaction. Most important feature of this method is re-
placement of the huge(ρ + n)(ρ + n) eigenvalue equation that describes the combined
system with much smaller eigenvalue equation that refers essentially to the systemSa.
In particular, all cardinal solutions can be derived from theρ × ρ eigenvalue equation
[�(εk)+ A]|�a

k 〉 = εkSa|�a
k 〉 that refers to the systemSa alone. Formally, this equation

is eigenvalue equationA|�s〉 = EsSa|�s〉 that described isolated systemSa subject to
the perturbation�(ε). This perturbation is a Hermitian operator acting in the spaceXa

ρ .
It is expressed in terms of the eigenvaluesλi of the systemSb and in terms of matrix ele-
ments〈χs |V|�i〉 and〈χs |P|�i〉, where vectors|χs〉 form a base inXa

ρ . Those quantities
incorporate essential features of the systemSb and of the interaction(V,P) between the
two systems. Eigenstate|�a

k 〉 of this equation is the projection of the eigenstate|�k〉 on
the spaceXa

ρ . This eigenstate describes all properties of the systemSa. Once|�a
k 〉 is

known, the projection|�b
k 〉 of |�k〉 on the spaceXb

n can be easily obtained. Thus, if the
solution to the systemSb is known, one can obtain all cardinal solutions of the combined
system as a solution to the above eigenvalue equation that refers to a systemSa alone.
Slightly more complicated expression is obtained for singular eigenvaluesεk ∈ {λi} and
the corresponding eigenstates, provided such eigenvalues and eigenstates exist.

The method can be easily generalised to the time-dependent eigenvalue equation
ih̄S∂/∂t|�(t)〉 = H|�(t)〉. In conclusion, the systemSa that interacts with potentially
very huge known systemSb can be described in an exact way with an eigenvalue equa-
tion that refers essentially to the systemSa. In this eigenvalue equation the role of the
“perturbation” is assumed by the operator�(ε) that incorporates basic features of the
systemSb and of the interaction between the two systems. In general, one has to know
the solution to the systemSb in order to construct this operator. However, in practical
applications one can use a different approach. Even if the solution to the systemSb

is not known, one can model this operator in such a way as to reproduce some known
properties of the systemSa. This modelling should be assisted with the knowledge of
the general structure of the operator�(ε) and with possible partial knowledge of the
systemSb and the nature of the interaction between the two systems. Such an approach
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may provide a reasonably good description of a systemSa that interacts with a relatively
large and not completely known systemSb.

In the caseρ = 1 the suggested method and its performance was successfully
verified by the computer program using random matrices as large asn = 5 · 106 [6].

Appendix

A.1. Basic relations

If Sa is Hermitian and positive definite inXa
ρ, (S

a)−1/2 exists and it is also Her-
mitian and positive definite. Eigenvalue equation (1a) is hence equivalent to

A0|φs〉 = Es |φs〉, (A.1)

where

A0 =
(
Sa
)−1/2

A
(
Sa
)−1/2

, |φs〉 =
(
Sa
)1/2|�s〉. (A.1′)

Hermiticity of A andSa implies hermiticity ofA0, and the eigenvaluesEs of the
eigenvalue equation (1a) are hence real. Further, eigenstates|φs〉 of A0 can be ortho-
normalized according to〈φs |φp〉 = δsp, which implies (1b). The set{|�s〉} is hence
complete. In a similar way one shows that eigenstates|�i〉 of (2a) and eigenstates|�k〉
of (3a) can be orthonormalized according to (2b) and (3d), respectively.

Define operatorsIa, Ib andI:

Ia =
ρ∑
s

|χs〉〈χs |Ka, Ib =
n∑
i

|�i〉〈�i|Sb, I =
n+ρ∑
k

|�k〉〈�k|S. (A.2)

Using (4b) one findsIa|χp〉 = |χp〉 for each vector|χp〉 ∈ Xa
ρ . Since these vectors

form a base inXa
ρ , operatorIa is a projection operator on this space. In a similar way

one finds thatIb is a projection operator on the spaceXb
n, while I is a projection operator

on the combined spaceXn+ρ , i.e., it is a unit operator. One also hasI = Ia + Ib.
Multiplying perturbed eigenvalue equation (3a) from left with〈�i | and using (2)

and relations〈�i |A = 〈�i |Sa = 0 one obtains

(εk − λi)
〈
�i

∣∣Sb
∣∣�k

〉 = 〈�i |V− εkP|�k〉.
Since |�i〉 ∈ Xb

n one has〈�i |(V − εP) ∈ Xa
ρ . Hence 〈�i |(V − εP) =

〈�i |(V− εP)Ia. Using (A.2) one finds

(εk − λi)
〈
�i

∣∣Sb
∣∣�k

〉 = ρ∑
s

〈�i |V− εkP|χs〉
〈
χs

∣∣Ka
∣∣�k

〉
, i = 1, . . . , n. (A.3)

Multiplying perturbed eigenvalue equation (3a) from left with〈χs | and using
〈χs |B = 〈χs |Sb = 0 one finds

〈χs |V− εkP|�k〉 +
〈
χs

∣∣A− εkSa
∣∣�k

〉 = 0.
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FurtherA− εSa = (A− εSa)Ia, and hence

〈χs |V− εkP|�k〉 +
ρ∑
p

〈
χs

∣∣A− εkSa
∣∣χp

〉〈
χp

∣∣Ka
∣∣�k

〉 = 0, s = 1, . . . , ρ. (A.4)

In particular, for{|χs〉} ≡ {|�s〉} this relation simplifies to

〈�s |V− εkP|�k〉 + (Es − εk)
〈
�s

∣∣Sa
∣∣�k

〉 = 0, s = 1, . . . , ρ. (A.4′)

Relations (A.3) and (A.4) are starting relations for the derivation of theorems 1
and 2.

A.2. Proof of theorem 1

Let εk /∈ {λi} be a cardinal eigenvalue of the perturbed equation. Dividing (A.3) by
(εk−λi) (i = 1, . . . , n), multiplying by|�i〉, summing overi, adding to both sides of the
obtained relationIa|�k〉 ≡ ∑s |χs〉〈χs |Ka|�k〉 and using (A.2), one derives expression
(10) where coefficientsC(k)

s are given by (12). This relation expresses the perturbed
eigenstate|�k〉 as a linear combination of unperturbed eigenstates|�i〉 that span the
spaceXb

n and states|χs〉 that span the spaceXa
ρ . Next one has to determine unknown

coefficientsC(k)
s . Multiplying expression (10) from left with〈χp|(V− εkP) one obtains

〈χs |V− εkP|�k〉 =
ρ∑
p

"sp(εk)C
(k)
p , (A.5)

where"(ε) is given by (8a).
Comparing (A.4) and (A.5) one finds

ρ∑
p

[
"sp(εk)+

〈
χs

∣∣A− εkSa
∣∣χp

〉]
C(k)

p = 0. (A.6)

This is relation (11). It is a homogenous linear set ofρ linear equations inρ un-
knownsC(k)

p . In order for the eigenstate (10) to be nontrivial, at least one coefficientC(k)
p

must be nonzero. Hence (A.6) should have a nontrivial solution. However, this relation
has a nontrivial solution if and only if the determinant of a system vanishes, which gives
condition (7).

This proves that the necessary condition forε ≡ εk to be an eigenvalue of the
perturbed equation (3a) is that it satisfies (7). Further, it shows that ifε ≡ εk is a per-
turbed eigenvalue, the corresponding eigenstates are all of the form (10), where the
coefficientsC(k)

p are components of a column vectorC(k), nontrivial solution of a matrix
equation (11).

Following the above derivation backwards one finds that the inverse is also true.
Each rootε ≡ εk /∈ {λi} of (7) is an eigenvalue of the perturbed equation (3a), and all
the corresponding eigenstates are of a type (10), where coefficientsC(k)

p = 〈χp|Ka|�k〉
satisfy (11). This proves theorem 1.
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A.3. Proof of theorem 2

Assume the same conditions as in theorem 1. Letεk = λj be a singular eigenvalue
of the perturbed eigenvalue equation (3a). Let furtherλj be aη-degenerate eigenvalue
of the unperturbed equation (2a), and let|�jν〉 (ν = 1, . . . , η) be the corresponding
unperturbed eigenstates.

Dividing (A.3) by (εk−λi)(λi �= εk), multiplying by |�i〉, summing overi, adding
to both sides of the obtained relation

∑
s |χs〉〈χs |Ka|�k〉+∑ν 〈�jν |Sb|�k〉|�jν〉 and us-

ing (A.2), one derives expression (15) where coefficientsC(k)
s andD(k)

ν are given by (17).
This relation expresses the perturbed eigenstate|�k〉 as a linear combination of unper-
turbed eigenstates|�i〉 that span the spaceXb

n and states|χs〉 that span the spaceXa
ρ .

Next one has to determine unknown coefficientsC(k)
s andD(k)

ν . Multiplying (15)
from left with 〈χp|(V− εkP) one obtains

〈χs |V− εkP|�k〉 =
ρ∑
p

"sp(εk)C
(k)
p +

η∑
ν

〈χs |V− εkP|�jν〉D(k)
ν , (A.7)

where"sp(εk) is given by (8b).
Comparing (A.4) with (A.7) one finds

ρ∑
p

[
"sp(εk)+

〈
χs

∣∣A− εkSa
∣∣χp

〉]
C(k)

p +
η∑
ν

〈χs |V− εkP|�jν〉D(k)
ν = 0,

s = 1, . . . , ρ. (A.8)

Further, relation (A.3) fori = j implies

ρ∑
p

〈�jν |V− εkP|χp〉C(k)
p = 0, ν = 1, . . . , η. (A.9)

Relations (A.8) and (A.9) form a homogenous linear set ofρ+η linear equations in
ρ+η unknownsC(k)

p andD(k)
ν . Expressed in a matrix form those relations are equivalent

to relation (16). This relation has a (nontrivial) solution if and only if the determinant of
a system vanishes, which gives condition (13).

This proves that the necessary condition forεk = λj to be a singular eigenvalue of
the perturbed equation (3a) is that it satisfies (13). Further, it shows that ifεk = λj is
a perturbed eigenvalue, the corresponding eigenstates are all of the form (15) where the
coefficientsC(k)

p andD(k)
ν are given by (17). Moreover, those coefficients are components

of a column vector(C(k),D(k)) that is a nontrivial solution of a matrix equation (16).
Following the above derivation backwards one finds that those conditions are also

sufficient. Ifεk = λj satisfies (13) it is a singular eigenvalue of the perturbed eigenvalue
equation (3a). Further, each nontrivial solution(C(k),D(k)) of (16) generates according
to (15) the corresponding eigenstate. This proves theorem 2.
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A.4. Proof of lemmas 1 and 2

By definition, nullity of the operator�(εk)+A−εkSa is the number of the linearly
independent solutions to (11). LetC(kr) (r = 1, . . . , l) be those linearly independent
solutions. According to (10) each vectorC(kr) generates a perturbed eigenstate|�kr〉.
Assume those perturbed eigenstates to be linearly dependent. Then there exist a nontriv-
ial set of coefficientscr such that

∑
r cr |�kr〉 = 0. Since|�i〉 ∈ Xb

n while |χs〉 ∈ Xa
ρ , this

and (10) implies
∑

s

∑
r C

(kr)
s cr |χs〉 = 0. Since base vectors|χs〉 are linearly indepen-

dent, one has
∑

r crC
(kr)
s = 0 (s = 1, . . . , ρ). Thus vectorsC(kr) are linearly dependent,

contrary to the assumption. Hence the eigenstates|�kr〉 must be linearly independent.
This shows that the degeneracy ofεk equals the number of linearly independent solutions
C(k) to (10), which completes the proof.

Note that the above derivation proves not only that eigenvectors|�kr〉 are linearly
independent, but also that the projections|�a

kr〉 ≡
∑

s C
(kr)
s |χs〉 of those eigenstates on

the spaceXa
ρ are linearly independent.

Lemma 2 can be proven in the same way.

A.5. Proof of the interlacing rule

Let the unperturbed eigenvaluesλi (i = 1, . . . , n) and the perturbed eigenvalues
εk (k = 1, . . . , n + ρ) be arranged in a nondecreasing order. In the special caseρ = 1
those eigenvalues are interlaced according to [6]

ε1 � λ1 � ε2 � λ2 � · · · � λn � εn+1. (A.10)

According to a matrix representation (5), transition from the unperturbed equa-
tion (2a) to the perturbed equation (3a) represents augmentation of this equation by
ρ additional rows andρ additional columns. One can obtain this augmentation applying
ρ times matrix augmentation by a single row and a single column. Thus, a general case
ρ > 1 can be obtained as a result ofρ successive applications of theρ = 1 case. How-
ever, to eachρ = 1 case interlacing relation (A.10) applies. By induction, one obtains
general interlacing rule (21). For example, letρ = 2. One can obtain this case by two
ρ = 1 augmentations. Denote perturbed eigenvalues obtained after first augmentation
by ε′1, . . . , ε

′
n+1 and denote perturbed eigenvalues obtained after second augmentation

by ε1, . . . , εn+2. According to (A.10) one has

ε′1 � λ1 � ε′2 � λ2 � · · · � λn � ε′n+1.

After first augmentation, eigenvaluesε′1, . . . , ε
′
n+1 assume the role of the unper-

turbed eigenvaluesλi, and hence applying (A.10) once more one obtains

ε1 � ε′1 � ε2 � ε′2 � · · · � ε′n+1 � εn+2.

Combining those two relations one findsεi � λi andλi � εi+2. This is rela-
tion (21) for the caseρ = 2.
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A.6. Proof of orthonormality relations (23)–(25)

Using relations (2b) and (3d) one finds that each cardinal eigenstate should be
normalized according toW−1/2

k |�k〉 where|�k〉 is given by (10) and where

Wk =
ρ∑
sp

C(k)∗
s C(k)

p

{
n∑
i

[〈χs |V− εkP|�i〉〈�i |V− εkP|χp〉
(εk − λi)2

+ 〈χs |V− εkP|�i〉〈�i |P|χp〉
εk − λi

+ 〈χs |P|�i〉〈�i |V− εkP|χp〉
εk − λi

]
+ Sa

sp

}
.

In the case of singular eigenstates (15) one finds

Wk =
ρ∑
sp

C(k)∗
s C(k)

p

{
n∑

i(λi �=εk)

[ 〈χs |V− εkP|�i〉〈�i |V− εkP|χp〉
(εk − λi)2

+ 〈χs |V− εkP|�i〉〈�i |P|χp〉
εk − λi

+ 〈χs |P|�i〉〈�i |V− εkP|χp〉
εk − λi

]
+ Sa

sp

}
+

η∑
ν

D(k)∗
ν D(k)

ν .

With some algebra above expressions transform into relations (23).
Consider now scalar products〈�k|S|�l〉 between normalized eigenstates|�k〉

and|�l〉. If both eigenstates are cardinal, one finds:

〈�k|S|�l〉 = (WkWl)
−1/2

ρ∑
sp

C(k)∗
s C(k)

p

{
n∑
i

[ 〈χs |V− εkP|�i〉〈�i |V− εlP|χp〉
(εk − λi)(εl − λi)

+ 〈χs |V− εkP|�i〉〈�i |P|χp〉
εk − λi

+ 〈χs |P|�i〉〈�i |V− εlP|χp〉
εl − λi

]
+ Sa

sp

}
.

This relation can be transformed into (24). In the same way relation (25) can be
derived.

A.7. Time dependent eigenvalue equation

Relations (A.2) imply

|�s〉 =
∑
k

|�k〉〈�k|S|�s〉, s = 1, . . . , ρ, (A.11a)
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|�i〉 =
∑
k

|�k〉〈�k|S|�i〉, i = 1, . . . , n, (A.11b)

where|�k〉 are orthonormalized according to (3d).
If P = 0 relations (30) and (34) imply

〈�s |S|�k〉 ≡ 〈�s|S
∣∣�a

k

〉 = 1

W
1/2
k

ρ∑
p

C(k)
p

〈
�s

∣∣Sa
∣∣χp

〉
, (A.12)

〈�j |S|�k〉 ≡ 〈�j |S
∣∣�b

k

〉 = 1

W
1/2
k

∑ρ
p 〈�j |V|χp〉C(k)

p

εk − λj

, εk �= λj, (A.13a)

〈�jν |S|�k〉 ≡ 〈�jν |S
∣∣�b

k

〉 = D(k)
ν

W
1/2
k

, εk = λj . (A.13b)

The case (A.13b) can happen only if|�k〉 is singular and if in addition the corre-
sponding eigenvalue equalsεk = λj . Indexν labels possible degeneracy of the unper-
turbed eigenstates|�jν〉 that have common eigenvalueλj .

From (A.11a), (A.12) and (37) one obtains relation (40), while (A.11b) and (A.13)
imply relations (42).
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