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Interaction of quantum syste¥” described by the generalisgdx p eigenvalue equa-
tion A|@;s) = EsS*Oy) (s = 1,..., p) with quantum systerﬁ;b described by the gener-
alisedn x n eigenvalue equatioB|®;) = A; Sb|q>,~) i=1..., n) is considered. With the
systemS“ is associateg-dimensional spaca’g and with the systens? is associated an
n-dimensional spacK,Ij that is orthogonal to’(fg. Combined systens$ is described by the
generalisedp + n) x (p + n) eigenvalue equatiod + B + V]|W;) = g [S* + S P]|W)
*k=1,..., n+ p) where operator¥ andP represent interaction between those two systems.
All operators are Hermitian, while operat@$, s andS = $* + P + P are, in addition, pos-
itive definite. It is shown that each eigenvalye¢ {1;} of the combined system is the eigen-
value of thep x p eigenvalue equatioff2(e;) + AJ|WY) = & S*|¥}). Operator®(e) in this
equation is expressed in terms of the eigenvalyesf the systemsS” and in terms of matrix
elementg x|V|®;) and(x,|P|®;) where vectors$y,) form a base ir}Yg. Eigenstat&\l/,@ of
this equation is the projection of the eigenstaltg) of the combined system on the spacg.
Projection|W?) of |Wy) on the space’ is given by|W?) = (,S" — B)"L(V — & P)|¥¢)
where(e; S* — B) L is inverse of(s;, S” — B) in X%2. Hence, if the solution to the systefi¥
is known, one can obtain all eigenvalugs¢ {1;} and all the corresponding eigenstaiég)
of the combined system as a solution of the abpwe p eigenvalue equation that refers to
the systemsS“ alone. Slightly more complicated expressions are obtained for the eigenvalues
e € {A;} and the corresponding eigenstates, provided such eigenvalues and eigenstates exist.

KEY WORDS: interaction of quantum systems, perturbation, diagonalisation, generalised
eigenvalue equation, eigenvalues, eigenstates

1. Introduction

Consider quantum systeth consisting of two subsysten®’ and S” that are in
mutual interaction. We assume that the solution to the isolated sySteism known,
and we would like to find an exact solution of the combined sysfem S¢ @ S”. In
particular, we would like to find an efficient description of the systgfrsubject to the
interaction with the known systef. In a standard approach, this is usually done either
with some diagonalization method, or with a perturbation expansion. We would like to
obtain this solution in a more efficient way, utilising as much as possible the knowledge
of the solution to the subsyste&t.
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There are numerous problems in physics and chemistry of this type. For exam-
ple, one may consider the interaction of an atom or a molecule (sySt@nthat is
placed on a surface of some solid state with this solid state (sySt@¢nmJsually an
approximate solution to the systes4 is known. To the extend this solution is reliable,
one has a problem of the interaction of a syst§frwith a known systens”. As an-
other example, consider the effect of various substitution groups (systgin a given
molecule. If the solution to the remaining molecular skeleton (sys$éjris known,
one would like to obtain in a relatively simple way the solution of the combined sys-
tem S. To the same type of problems belongs substitution of an atom in a molecule
with a heteroatom, creation and destruction of a chemical bond, etc. One may also
consider molecular vibrations in the harmonic approximation [1]. If atomic displace-
ments are expressed in terms of Cartesian coordinates, one arrives at the eigenvalue
equation of a typd-|W¥,) = M |¥;), whereF is a force field matrix, whileM is a
diagonal matrix containing on a diagonal atomic masses. Both matrices are Hermitian,
and matrixM is, in addition, positive definite. One may be interested how frequencies
and normal modes of some molecular systéfnare influenced by the interaction of
this system with another systeff with known frequencies and normal modes. Sys-
tem S? may be another molecule, in which case one is looking for frequencies and
normal modes of the combined molecular syst§mHowever, systen&” may be a
solid state, with systen$“ representing a molecule that interacts with the surface of
this solid state. In this case one usually wants to know how frequencies and normal
modes of a molecul&” are influenced by the interaction of this molecule with the solid
stateS?.

There is another conceptually different class of problems that can be formulated in
terms of the interaction of quantum systeSfsandS?, where the solution to the system
S’ is known. Assume one has to solve an eigenvalue equation describing some quantum
system and one has obtained an approximate solution in a finitedase= 1, ..., n).

One can increase this base with additional vectgrs (s = 1, ..., p) in order to im-

prove the solution. The eigenvalue equation in the original Bgsg} represents sys-
temS?, eigenvalue equation in the augmented Hége, | x,)} represents combined sys-
temsS, and additional vectory, ) form a base in a syste§t'. For example, base vectors

|¢;) can be atomic orbitals, while the eigenvalues and the eigenstates of the correspond-
ing eigenvalue equation represent molecular orbitals and their energies. One would like
to find out how the inclusion of additional atomic orbitajg) influences those molec-

ular orbitals and their energies. As another example, assume that base \g¢tars
resonance structures in a VB model, and one is looking for the VB ground state. One
can increase the base $g#;)} with additional resonance structureg)(s =1, ..., p)

in order to decrease ground state energy as much as possible. Since VB resonance struc-
tures are in general not orthogonal to each other, the corresponding eigenvalue equa-
tion is a generalised eigenvalue equation of a tip&) = £S|¥) whereS s positive
definite.
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2. Formulation of a problem

Let us now formulate in more mathematical terms general type of the problem
to be considered. We will restrict our discussion to quantum systems involving finite-
dimensional spaces. The case of the infinite dimensional systems that may contain eigen-
value bands will be considered elsewhere [2].

We associate with a syste§f a p-dimensional spac&y and with a systens?”
an n-dimensional spac&’. Those spaces are orthogonal to each other, and with the
combined systen$ is associated a(n + p)-dimensional spacg, . ,. SystemS* alone
is described by the generalised eigenvalue equation

Al®,) = E;S"|0;), s=1...,p, (1a)

whereA andS* are Hermitian operators acting in the spacg and wheres is, in addi-

tion, positive definite. No other assumption about those operators is made. Hermiticity
of these operators and positive definitenesS’@nsures that the eigenvaluBsare real.

In addition, the corresponding eigenstates can be always orthonormalized according to
(see appendix):

(©,]5"©,) = 8sp (1b)

In a similar way, systen$” alone is described by the generalised eigenvalue equa-
tion

B|®;) = ,,S|®;), i=1,...,n, (2a)

whereB and S’ are Hermitian operators acting in the spacgand where operatds’
is, in addition, positive definite. Eigenvalugsare hence real, and the corresponding
eigenstate$d;) can be orthonormalized according to

(@:|S]@;) = 8. (2b)

Relations (1) and (2) describe systeSfsandS? in isolation, that is without mu-
tual interaction. The interaction is introduced by Hermitian operatoaesdP, and the
eigenvalue equation describing the combined sysfesubject to the interactiofV, P)
is

H|\I’k> = SkS|\Ifk>, k=1 ....n+ 0, (33.)
where
H=A+B+V, S=S"+5 +P. (3b)

OperatorsV and P that describe interaction have nonvanishing matrix elements
only between states in the spak¢ and states in the space. Hence

V = 14VI? £ 1PV]9, P=1PI® +1°PI¢, (3c)

wherel“ andl® are projection operators on spadéﬁandXﬁ, respectively.
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In order to guarantee the reality of the eigenvaldgsoperatorS is required to
be positive definite in the combined spakg, ,. This requirement imposes some re-
strictions on the operatdP. There is no restriction on the operatd;, except that
this operator should be Hermitian and that it should connect states in the spaces
andXx?.

In analogy to (1b) and (2b), eigenstatds) of the combined system can be ortho-
normalized according to

(W] S|¥;) = 8k (3d)
The above eigenvalue equations can be formulated as matrix equations in some
fixed basis. Le|r)} (- = 1,...,n) be an orthonormalized base in the space
(rlty =68y, r,t=1...,n. (4a)

Similarly, let{|x)} (s =1, ..., p) be a base in the spadg. We make na priori
assumption about this base. Given this base, one can define op€tatocording to

(s [K ) = S (4b)

Since vectorgy;) are by definition linearly independent and completexif) op-
eratorK¢ exists, it is unique, and it is nonsingularxrj;.

Once chosen, bas¢lg)} and{|x,)} are fixed. For the sake of simplicity, we will
use the same notation for various operators and vectors, and their representations in
those basis. With this conventidh andS” aren x n matrices with matrix elements
By = (r|B|t) and S5 = (r|S|t), respectively, whilg®;) is ann-component column
vector with component®;, = (r|®;). Similarly, A and S* are p x p matrices with
matrix elementsisp = (xs|Alx,) andSg, = (x5S x,), respectively.

In the basd|r), | x,)} of the combined spac¥, ., operatord = A+ B+ V and
S= % + S + Pare represented by matrices

=l 8] os=[ 3] ®

whereU = 1°VI¢ andX = I’PI, while Ut and X* denote Hermitian conjugate to
U andX, respectively. According to this representation, combined eigenvalue equation
(3a) is an augmented eigenvalue equation, where the eigenvalue equation (2a) containing
matrices of ordern is augmented by additional rows ang additional columns.

Combined systend is shown schematically in figure 1. Generalised eigenvalue
equations (1a)—(3a) allow for a most general treatment of quantum sysiéns®
and S. Most important is the cas& = 14, = |1> andP = 0 when those equa-
tions reduce to normal eigenvalue equations. We will treat those eigenvalue equa-
tions in the above most general form. Our aim is to solve the combined eigenvalue
equation (3a) given the solution (eigenvalugsand eigenstategd;)) of the eigen-
value equation (2a). Accordingly, we will consider syst&fhas the original unper-
turbed system. From this point of view, relation (3a) is a perturbed eigenvalue equa-
tion where the “perturbation” is represented by the interactddnP) and by the sys-
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Figure 1. Interaction of the quantum syst&h described by the generalised eigenvalue equation (1a) with
the quantum syster§® described by the generalised eigenvalue equation (1b). Combined sgstea
incorporates generalised interactidn, P) is described by the generalised eigenvalue equation (3a).

tem S“(operatorsA andS*). Note that in the traditional formulation of the perturbation
approach, one usually considers union of systéihsand S” without mutual interac-

tion as the unperturbed system. We apply here the notion of the unperturbed system
to the systemS? alone. This allows for a more flexible treatment of a combined sys-
temS.

We will solve eigenvalue equation (3a) following general method of the low rank
perturbation (LRP) approach [3]. In this approach it is convenient to distinguish two
types of the solution to the perturbed equation. If the eigenvajuef the combined
systemS differs from all the eigenvalues; of the unperturbed systed’, that is if
er ¢ {A;}, this eigenvalue and the corresponding eigenstate or eigenBlateis “car-
dinal”. Otherwise, this eigenvalue and the corresponding eigenstate or eigenstates is
“singular” [3]. Most numerous and most important are cardinal eigenvalues and eigen-
states. Singular eigenvalues usually arise as a consequence of some symmetry, or as a
consequence of some other special condition.

We also distinguistactive and passiveunperturbed eigenvalues. This notion is
defined relative to the perturbatiaiv, P) [3]. Let the unperturbed eigenvalug be
n-degenerate, and lg®;,), (v = 1,...,n) be the corresponding unperturbed eigen-
states. By definition, this eigenvalue is passive if all matrix elemepty — 1 ,;P|®;,)
(s=1...,p;v=1...,n) vanish, otherwise it is active. In other words,is passive
if the subspace associated with this eigenvalue is contained in a null subspace of the
operatorV — A ;P:

3. Solution of the combined eigenvalue equation

In the appendix we derive two theorems that provide a general solution to the com-
bined eigenvalue equation (3a). This solution is expressed in terms of the known solution
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to the unperturbed syste&?. In this respect, suggested method resembles the perturba-
tion expansion method, which also requires the knowledge of the solution to the unper-
turbed system. However, unlike perturbation expansion, the obtained relations provide
a solution to the combined system in a closed form. There is no expansion in a power
series, and numerical efficiency of the method does not depend on the magnitude of the
perturbation. In particular, there is no convergence problem in adimit oo [2]. If the
interaction is strong enough, standard perturbation method usually fails in this limit.

First theorem refers to the cardinal eigenvalues and eigenstates of the combined
system:

Theorem 1 (Cardinal eigenvalues and eigenstates). Congiefimensional systen§®
(equation (1a)),n-dimensional systemS? (equation (2a)) and combinetb + n)-
dimensional syster§ (equation (3a)). Let the eigenstatds) of S” be orthonormalized
according to (2b). Let furthely;) € X¢ form a base inX;. Then

(a) & ¢ {1;} is an eigenvalue of the combined eigenvalue equation (3a) if and only
if it is a root of the functioni (¢)

h(g) = |R(e) +A -S| =0, &¢{n}, (7)
wheref(¢e) is ap x p Hermitian matrix with matrix elements

(X5 |V — eP|®;) (D;|V — &P|x,)
Qeple) = ) = -y :
1

) £ ¢ {)\'i}’ (Sa)

i
while A andS* arep x p Hermitian matrices with matrix elements
Asp = <XS|A|X17>7 Sgp = <Xs|Sa‘Xp>- 9)

(b) Lete; ¢ {A;} be an eigenvalue of the combined eigenvalue equation (3a). Each
eigenstate corresponding to this eigenvalue is of the form

PP, |V — &Plxs)C
Z 2 ; )+ Z CcPlx).  (10)

whereC® are components of a column vect@f, a nontrivial solution of the
matrix equation

| () + A — S |CP =0. (11)

Inversely, each state (10) whe@& is a nontrivial solution of (11) is an eigenstate
of (3a) that corresponds to the eigenvadyeln addition, component§® of C% satisfy

Cs(k) = <XS|Ka|\IJk>, s = l, ey P (12)

According to the above theorem, each nontrivial solut@h of (11) produces an
eigenstate of the combined eigenvalue equation. All such eigenstates correspond to the
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same eigenvalue,. One can show (see appendix) that linearly independent solutions
C® produce linearly independent eigenstates. Hence:

Lemma 1. Degeneracy of the eigenvalug ¢ {A;} of the combined system equals the
nullity of the operato(g;) + A — &S

SinceR(gr) + A — .S is ap x p matrix, each cardinal eigenvalae ¢ {);} is at
mostp-degenerate.

Second theorem refers to singular eigenvalues and eigenstates of the combined
system:

Theorem 2 (Singular eigenvalues and eigenstates). Assume the same conditions as in
theorem 1. Let furthek; be an-degenerate eigenvalue of the unperturbed eigenvalue
equation (2a), and lgt;,)(v = 1,..., n) be the corresponding eigenstates orthonor-
malized according to (2b). Then

(a) ex = A; is an eigenvalue of the combined eigenvalue equation (3a) if and only
if it satisfies
Q) +A— S W®

w®+ 0 =0, (13)

whereA andS” arep x p Hermitian matrices with matrix elements (®(s;) is
ap x p Hermitian matrix with matrix elements

n

(xsIV = &P} (P: |V — &kPlx,)
SUEIES s

e € (). (8b)
i(hiFek)

W® is ap x n matrix with matrix elements
WP = (4, IV—gPl®;,), s=1...,p,v=1...,1, (14)
while Ois an x n null matrix.

(b) Leter = A; be an eigenvalue of the combined eigenvalue equation (3a). Each
eigenstate corresponding to this eigenvalue is of the form

(®;|V — &P|x)C !
W) = Z 2.l - Zc@m +Y DP|D;,),

e Ai
i(ier) k=

(15)
whereC® and D are components of a column vect@®, D®)), a nontriv-
ial solution of the matrix equation

Q) +A - WH (k)
¢ ¢ € )=o (16)
W R+ 0 D®
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Inversely, each state (15) whef€®, D®) is a nontrivial solution to (16) is an
eigenstate of (3a) corresponding to the eigenvajue ;. In addition, coefficient€®
and D® satisfy

CH = (g |Ke|w). D® =(0,[|w). s=1..p.v=1...n (@7)

Relation (8b) completes the definition of matrix eleme®tg(e). If ¢ ¢ {A;} those
matrix elements are defined according to (8a), whikedf {1;} they are defined accord-
ing to (8b). Usually the expression (8a) has singularity in the poiat A; and in this
case matrix elementsy(¢) of the operatof2(e) are not continuous in this point. How-
ever, ifA; is passive, expression (8a) has well-defined limit.lim Qsp(e) = Qsp(2 ).
In this case each matrix elemefty(e) is continuous and analytic in the point= A ;.
The functioni(e) is hence also continuous and analytic in this point.

Concerning degeneracy of singular eigenvalues, one finds in analogy to lemma 1.

LemmaZ2. Lete, = X; be a singular eigenvalue of the combined eigenvalue equation.
The degeneracy of this eigenvalue equals the number of linearly independent solutions
(C™, DW) of the matrix equation (16).

Since matrix equation (16) involvega+ n) x (o + ) matrix, eigenvalue; = A;
of the combined system can be at mgst+ n)-degenerate. One also finds thaf it p
this eigenvalue is at least) — p)-degenerate. It follows that generalised interaction
(V, P) can alter (decrease or increase) degeneracy of the unperturbed eigenvalue
by at mostp. This applies also to cardinal eigenvalues, since each cardinal eigenvalue
e, ¢ {);} is at mostp-degenerate.

Theorem 2 supplements theorem 1, and it provides the solution for the remain-
ing singular eigenvalues and eigenstates of the combined eigenvalue equation. Let us
analyse in more details those solutions. Condition (13) expresses the requirement that
matrix equation (16) should have a nontrivial solution. The solution to this equation is
particularly simple if the unperturbed eigenvalugis passive. In this casy/® = 0 and
(16) implies condition (11) on the vect@*). There is no condition on the vectd¥®,
and (16) has always a solutigd, D®’) whereC*® = 0 while vectorD® can assume
any value. Each unperturbed eigenstigbe,) is hence an eigenstate of the combined
system. In addition, each vect6f® that satisfies (11) with, = A, generates a solution
(C™, 0) of (16). According to (15), the corresponding eigenstate is

Z CD |V - SkP|Xs
) C(k) s 10
(W) I(AE#H — )+ E [Xs)- (10)

In conclusion, ifA; is passiveg, = 1; is an eigenvalue of the combined system.
Each unperturbed eigenstate;,)(v = 1, ..., n) is the corresponding eigenstate of the
combined system. If, in additiord,; satisfiesh(1;) = 0, there are additional eigen-
states (10, whereC™® are nontrivial solutions to (11). Eigenstates'jldre formally
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identical to the eigenstates (10), except that the summation ih ¢t€ludes all terms
that satisfyA; = . Each such term is indefinite of a typg® Note that ifs ; is passive,
function i (¢) is continuous in this point.

If A; is active, the problem is slightly more complicated. In this dA%€ = 0 and
(16) implies a nontrivial condition on a vect@®:

w®+ch = o, (16)

General solution to (16) can be now analysed in terms of the solutions’)aa(ib
in terms of the solutions to the auxiliary equation

w®D® = 0. (18)

Each nontrivial solutio® to this equation generates a soluti@D®) to (16).
The corresponding eigenstate (15) of the combined system is

U

W) =Y DX|D,). (15)

v

If relation (16) has no nontrivial solution, one h&$" = 0. In this case eigenstates
(15) whereD™® is a solution to (18) are the only eigenstates of the combined system
corresponding to the eigenvalég = ;. In particular, if neither (1§ nor (18) has a
nontrivial solution,e = A; is not an eigenvalue of the combined system.

If (16') has a nontrivial solution, additional eigenstates are possible. For example,
if (16") and (11) have in common the same nontrivial solu@k, relation (16) has a
solution(C®, 0), which produces an eigenstate of a type 1 addition, relation (16)
may have solutions of a more general ty@&*, D®) whereC*® £ 0 andD® # 0.
Such solutions, if they exist, produce eigenstates of the general type (15).

The above two theorems exhaust all possibilities. All cardinal eigenvalues
er ¢ {A;} of the combined eigenvalue equation are roots of the fundétieh. Once a
particular roots, of i(e) is found, the corresponding eigenstate (eigenstates) is given by
equation (10) where vector (vectoiSJ* is a solution of (11). Concerning remaining
singular eigenvalues, € {;}, each such eigenvalue coincides with some unperturbed
eigenvaluel ;, and all one has to do is to verify condition (13). This verification can be
simplified using relation (1% and auxiliary relation (18). In particular, each nontrivial
solutionD® of (18) generates singular eigenstate’Y15

In the computer implementation of the above method, in order to find each par-
ticular roote; of h(¢e), one has to recalculate in an iterative way this function for many
different values ot. In the casd® # 0, one can substantially speed up this iteration if
the above relations are slightly modified [2]. After some algebra one finds that matrix
(¢) can be written as

Q) = 2%%) + a + ¢, (29)
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where Q°(e), @ and B are p x p matrices with matrix eIementQQp(s), asp and Bsp,

respectively
n C(i) .
Qe =) = ey = (6IV = API®) @iV — AiPlX,), (20a)

1
n

asp= Y [2i{xsIPI®:)(Di[PIxp) — (s IPI®:) (@i VXp) — (x5 Vi) (D: P x,)]-

! (20D)
Bsp =D _ (XsIPI®;)(®;[Plx,).
Relations (7) and (11) accordingly transform into
he) =[R%e) +a+A+e(f—5) =0 (7)
(%) +a+A+e(B—S)|C=0. (11)

The main difference between matrix elemefig,(e) of the operator2(e) and
matrix elementﬂgp(e) of the operato®°(¢) is that those latter matrix elements contain
the unknowne only in the denominator of the sum (20a). This property is useful in
order to speed up the iterative recalculation of the funckiG) and thus to improve the
calculation of each particular roet of 4 (e) [2].

In addition to the explicit expressions for the eigenvalues and eigenstates of the
combined system, approximate distribution of the eigenvalpésalso of interest. Due
to the interaction, eigenvalueg of the combined system shift relative to the unperturbed
eigenvalues.;. Maximum possible shift of those eigenvalues is not arbitrary, and it is
mainly determined by the dimensignof the spaceX{. In the appendix we derive the
following.

Interlacing rule. Arrange unperturbed eigenvalugs(i = 1,...,n) and perturbed
eigenvalues,(k = 1,...,n 4+ p) in a nondecreasing order. Then these eigenvalues
are interlaced according to

8,‘<)x,’<8,‘+p, l=1,,n (21)

In particular, conditiom; < &1, implies that at mosp perturbed eigenvalues
€1,...,¢&, can be smaller than the first unperturbed eigenvalueSimilarly, condition
&, < A, implies that at mosp perturbed eigenvalues, 1, ..., €,4, can be larger than
the last unperturbed eigenvalug Hence at least — p eigenvalues; must be confined
to the intervalAq, A, ].

In the above theorems, no assumption about the fasg in the spacex§ was
made. Flexibility in the choice of this base can be utilised in order to cast obtained
relations in a more appropriate form for a given problem. Two such choices are partic-
ularly important. For some problems, it may be convenient to choose{phasgortho-
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normalized according tox,|x,) = Jsp. In this case operatd{® is a unit operator in
X¢(Ke =1). Another possible choice {$x;)} = {|®;)}. In this case one hd¢* = .
Other possible choices are less important.

Above theorems apply to generalised eigenvalue equations (1a)—(3a). All the cor-
responding relations substantially simplify if these equations are not completely gen-
eralised. The most important special cas®is= 0. This allows for the unperturbed
eigenvalue equations (1a) and (2a) to be still of the most general type. Only the perturbed
equation (3a) is slightly restricted with this requirement. This eigenvalue equation is still
a generalised eigenvalue equation, though not of a most general type. ORe=h8s
in a special but highly important case when instead of generalised eigenvalue equa-
tions (1a)—(3a) one has standard eigenvalue equadifs) = E,|O,), B|®;) = ;| D;)
andH|W¥,) = g, |¥,), respectively. Another slightly more general case is the problem of
molecular vibrations in harmonic approximation. This problem leads to the eigenvalue
equation of the type (3a) wheB&= M is a diagonal matrix, and hence ag&ir= 0.

4. Orthonormalization of eigenstates |¥;)

Eigenstates (10) and (15) of the combined system are not orthonormalized. Those
eigenstates can be easily orthonormalized according to (3d). This can be done using
orthonormality relation (2b) and properti®$y,), P|x;) € X’ andV|®;), P|®;) € X5

Concerning normalization, each eigenstpig) of the combined system can be
normalized according to

1
— 1%, (22)
Wk
whereW, = (W, |S|Wy). If |[\¥,) is cardinal, it is given by relation (10) whil&, equals
(see appendix):

P n

_ (k)* (k) (Xs|V = LiP|®:)(P; [V — APl xp)

= e |30 U AN AP |
sp i

ex ¢ (i} (23a)

If |W,) is singular, it is given by relation (15) and quanti# equals

p n
sIV = AiP[®i) (®i[V — AiPlx,)
W, — Cc®x k) va i i I
k Z $ p ' Z (ex — )Ll_)z
sp i (AiFek)

Ui
= Y (xIPI®) (@i |Plx,) + Ssp} +) DD
i(AiF#er) v

+ ) [CP*DP (xIPI@ ;) + CODPX @, |PIx)]. &= A € {1} (23b)

sV
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In particular, singular eigenstates (JL&re normalized according to

1 n
DW|P. ’

Consider now scalar productal,|S|¥,) between normalized eigenstatgs;)
and|¥,). If those eigenstates are cardinal, one finds

0
(W[ S|w)) = (W w2 ) " e
sp

i (XsIV = AiP1®; ) (P; [V — 1:Plx))
(ex — Ai)(er — Ap)

i

_,Bsp + Sgp:| 5 (24)

whereW, andW, are given by (23a). Slightly more complicated expressions are obtained
in the case of scalar produat¥, |S|¥;) involving singular eigenstates.

In general, if the eigenstatd¥’,) and |¥;) correspond to distinct eigenvalues
(ex # &), they are orthogonal to each other, i.el;|S|¥;) = 0. This orthogonality
follows from the hermiticity of operatord andS and from the fact tha§ is positive
definite. In particular, iff\w,) and|¥,) are cardinal eigenstates corresponding to dis-
tinct eigenvalues, expression (24) should equal zero. Since suggested method does not
enforce orthogonality of calculated eigenstates in any explicit way, this opens the pos-
sibility to use this expression as a practical test for the numerical accuracy of those
eigenstates [2]. In each numerical calculation due to the finite precision arithmetic, there
is always some error accumulation. Therefore, calculated eigenpigteslightly differ
from exact eigenstatgd,). If |¥;') and| ;') are calculated eigenstates that correspond
to different eigenvaluese{ # ¢;), they will be only approximately orthogonal to each
other, i.e., numerically one obtait¥,|S|¥,") ~ 0. One can use quantiti€d,|S|¥;")
as an objective measure of the numerical accuracy of those eigenstates. Since cardinal
eigenstates are by far most numerous, relation (24) that refers to cardinal eigenstates is
sufficient to obtain relatively reliable estimates of the numerical accuracy of calculated
eigenstates [2].

If the perturbed eigenvalug is nondegenerate, one has only to normalize the cor-
responding eigenstatd’;) according to the relation (22) or (23), since such an eigen-
state is automatically orthogonal to all other eigenstates. However, if the eigemyalue
is degenerate, one has to make an explicit orthonormalization of all the corresponding
degenerate eigenstates. In the case of cardinal eigenvalues, this can be done using ex-
pression (24) for scalar productd,|S|¥;) between degenerate eigenstatgs=£ ¢;)
and any of the standard orthonormalization procedures, such as Gramm-Schmidt ortho-
normalization [4,5] or alike. In the case of singular eigenstates, one needs analogous
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expression for the scalar product®,|S|¥,) between degenerate singular eigenstates.
One finds

1 - (XsIV = AiP|®;) (@ [V — A;P|x,)
(WS W) = ——— Y cWrc? P
k 1 (Wle)l/Z Z P l();#k) (8]( _ )\‘l)z

sp

— Z (Xs|P|<Di><q>i|P|Xp>+Sgpj|
i (AiFer)

+ 3 [CP* DO (x [PI®,) + CO DD (D, |Plxs) ]

sV

+Y_ DYDY } (25)
In the above expressio,) and|¥,;) are normalized singular eigenstates corre-
sponding to the same eigenvalgie= & = A;.
Orthonormalization of degenerate eigenstates using relations (24) and (25) should
be numerically easy to perform, since the dimension of the corresponding degenerate

subspace is almost always much smaller then the dimension of the combined’'space

5. Numerical considerations

An important practical aspect of the above approach is numerical efficiency. Since
cardinal solutions are by far the most numerous, main numerical load in solving per-
turbed eigenvalue equation involves the search for the root or roots of the fuh¢tipn
After a particular roots, of i(e) is found, operation count to find the corresponding
eigenstate or eigenstates (10) is relatively small. We will now estimate those operation
counts. Most interesting is the case when the known systeis much larger than the
systemsS¢, i.e., whenn > p. To be more specific, we will assume< n'/2. For the
sake of simplicity, eigenvalue equation (3a) with real matrices will be considered. In the
case of more general complex matrices various operation counts are slightly enhanced,
but qualitative order of magnitude estimates are the same as in the case of real matrices.

Operation count is usually expressed in terms of the number of flops needed to
perform a particular algorithm. A flop roughly constitutes the effort of doing a floating
point add, a floating point multiply, and a little subscribing [4]. Thus, the number of
flops approximately equals the number of multiplicative operations=). Therefore,
one can estimate operation count by estimating the number of multiplicative operations.

In order to initiate calculation of the roots af¢), one has first to fingpn ma-
trix elements(x,|V|®;) = Y (x;|VIr){r|®;) and pn matrix elementsx,|P|®;) =
3" (xs|Plr)(r|®;). In @ most general case involving real matrices this requiges’ 2
multiplications,» multiplications per matrix element. However, in some cases this op-
eration count can be considerably smaller. For example, in theRase0 one has
(xs|P|®;) = 0, and this decreases operation count by factor two. Further, if the sys-
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tem S” is very large, systens® usually interacts in a direct way with only relatively
small fraction ofS’. In such cases, only relatively few base vecteise X’ of the
systemS? are involved in the interaction with the syste$fi. The number of operations
required to calculate matrix elemeng |V |®;) and{x,|P|®;) accordingly reduces, and

it is usually of the ordeiO (pn). Finally, matrix elements$y, |V |®;) and(x,|P|®;) can

be given in an explicit analytic form. This may eliminate the need for the calculation
of those matrix elements. Thus, depending on a problem, this preparatory phase may
require anything from zero tod2? operations.

Once matrix elementsy, |V |®;) and (x,|P|®;) are known, one has to find root
or rootsg, of the functioni(e). This function is usually discontinuous in each point
¢ € {A;}, while in each interval, = (A,, A,,1) it is continuous and analytic. Assume
that a root or roots 0f(¢) in the particular interval, is required. Most root finding meth-
ods start with some initial approximate rag? € I,, which is then iteratively improved.
This iteration requires multiple recalculation of the functigia). At this point one may
use either expression (7) or expression. (Consider, for example, expression (7). Each
recalculation ofi(¢) using this expression involves calculationafo + 1)/2 functions
Qsp(e) followed by calculation of the determinant (7). Calculation of each function
Qsp(e) requiresn multiplications and: divisions, while calculation of the x p deter-
minant require$3/3 operations [4,5]. One finds that in order to calculate functian
for a particular value of one needs approximatety(p + 2)n + p3/3 ~ p(p + 2)n op-
erations. If the number of iterative recalculations of a functigs) is 77, this amounts
to Ny = It p(p + 2)n operations required to obtain ragtof 4(e). The number of iter-
ations/t, depends on many factors, in particular on the choice of the initial approximate
root s,ﬁo). However, this number is on average essentially independent on the dimen-
sionsn andp [3,6]. Operation count to obtain a single root/gt) is hence of the order
~ O(p?n). The same order of magnitude estimate is obtained if instead of the expres-
sion (7) one uses expression)(Mhere are however some differences. In the case of the
relation (7), in addition to the calculation of matrix elemeng |V |®;) and (x,|P|®;),
initial preparatory phase requires also calculation of coefficieg‘;}tsand of matrix el-
ementsasp and Bsp. Calculation of those quantities can be done with approximately
on(2p + 3) ~ 2p?n additional operations. This slightly increases operation count for
the initial preparatory phase. Further, in each iterative recalculati@gisQf instead of
p(p + 1)/2 functionsQsy(¢) one has to calculate(p + 1)/2 functionsQd,(¢). Calcu-
lation of each functiorﬂgp(e) requires onlyn operations, since coefficierttgg do not
depend ore. This decreases operation count for the calculation of each particular root
of h(e) approximately by factor two. In addition, using relatiory) (ubstantial further
decrease in the operation count can be obtained [2]. Nevertheless, the total operation
count to produce a single root bfe) is still of the order~ O (p?%n).

Once a rootg; of h(e) is obtained, calculation of the corresponding eigenstate
requires approximately®/3 operations to solve (11) followed hy(on) operations to
construct the corresponding eigenstate (10). If normalization is required, calculation of
the quantityW, according to (23a) requires addition@lpn) operations. Fop < n'/?
this adds to approximatelg (on) operations per normalized eigenstate.
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In conclusion, in order to find the root or roots bfs) there is initial prepara-
tory phase which requires, depending on the problem, anything from zefg40?)
operations. After this is done, calculation of each particular epatf i (e) requires
approximatelyO (p?n) operations. Once is known, calculation of the corresponding
normalised eigenstate requir€gpn) operations. If all eigenvalues and eigenstates are
needed, total operation count is of the ord&ip?n?). This is a rough order of magni-
tude estimate. More precise estimate depends on many details, such as selection of the
relation (7) or (7) to calculate functiork(¢), average number of iterations required to
obtain a single root of this function, details of the particular algorithm implementation,
etc. Nevertheless, it shows thaiif~ n'/2 the operation count to obtain all eigenvalues
and/or eigenstates of the combined eigenvalue equation is of the@(d&y. In compar-
ison, standard diagonalization methods such as Householder, Givens or Jacoby require
also 0 (n®) operations in order to calculate all eigenvalues and/or eigenstates of a nor-
mal eigenvalue equation [4,5]. In the case of generalised eigenvalue equation, one has
first to transform such an equation into a normal eigenvalue equation in order to solve
it by one of the standard diagonalization methodsS I1§ symmetric positive definite,
this transformation is most efficiently done by Cholesky decomposition [4]. One of the
presently best algorithms for the solution of the generalised eigenvalue equation involv-
ing real Hermitian matrices combines Cholesky decomposition with the symmetric QR
algorithm [4]. Total operation count of this algorithm i874].

Above analysis shows that, as far as numerical efficiency of the suggested method
is concerned, the break-even point with standard diagonalization methods is approxi-
mately atp &~ Cn/?, where constanf depends on the details of algorithm implemen-
tation. If p <« n%/?, and if all the eigenvalues and/or eigenstates are required, suggested
method should be numerically more efficient than standard diagonalization methods.

In some cases only a single eigenvalue and/or eigenstate is required. Standard diag-
onalization methods are not particularly suitable for such problems. Some other method,
such as power method, the Lanczos method, the Davidson algorithm, or the perturbation
expansion is usually more efficient. Operation count for the power method and Lanczos
method is higher ther (n?) but less thanO (n®) [4,5]. Lanczos method is substan-
tially more efficient than power method. However, both methods are suitable only for
few extreme eigenvalues, and those methods are again of the@¢a®rif an arbitrary
eigenvalue and/or eigenstate is required. Davidson’s algorithm has also an operation
count less tham (»®) if only a few solutions are required [7]. This algorithm is usually
a method of choice in a large scale CI calculations [7]. However, this method highly
relies on the scarcity of the Hamiltonian. Finally, operation count for the perturbation
expansion is less thafl (%) only if the perturbation is so small that higher expansion
terms can be neglected, or if the matrices involved are of some special kind, such as
sparse matrices or alike. Thus, all those methods are of the order highe® than
In addition, those methods apply only to a normal eigenvalue equation. In a case of
a generalised eigenvalue equation, there is an additional operation count of the order
O (n®) associated with the construction of the corresponding normal eigenvalue equa-
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tion. Hence, in this case one has agaiw?®) operations, even if a single eigenvalue
and/or eigenstate is required.

Suggested method is more efficient. Most unfavourable is the case when one has
to calculate matrix elementy;|V|®;) and{x,|P|®;) and when in addition most of the
matrix elementsgy,|V|r) and{x,|P|r) are nonzero. In this case, operation count to find
a single eigenvalue and/or eigenstate is dominated by the calculation of those matrix
elements, which is of the ord& (pn?). This is less thar® (n®) especially ifp is small,
but still at leastO (n?). However, if the formation of the above matrix elements does not
require as many a8 (pn?) operations, this operation count can be significantly smaller.
For example, if matrix elements,|V|r) and{x|P|r) are sparse, or if matrix elements
{(xs|V|®;) and{x,|P|®;) are a priori known, initial operation count required to construct
matrix elementsgy,|V|®;) and(x,|P|®;) can be as low a® (pn) or even smaller. In this
case, operation count to obtain a particular eigenvalue and/or eigenstate is dominated by
the calculation of the corresponding rootit) which is of the ordeiO (p?n). Hence if
p < n'/? operation count to obtain a single eigenvalue and/or eigenstate by this method
can be substantially smaller thann?).

For the special case = 1 suggested method and the above estimates were suc-
cessfully verified by the computer program written by the author [6]. In this program,
random matrices of the order= 100 up to including: = 5- 10° were considered [6].

6. System S¢intheinteraction with a known system S” as a nonlinear
eigenvalue praoblem

Relations obtained in theorems 1 and 2 can be cast into a more familiar form. Each
eigenstatew,) of the combined system is a linear combination
We) = W)+ [¥y), (26)
where|V}) € X{ and Wby e X’ are projections of this eigenstate on subspacgs

andX?, respectively. If¥,) is a normalized cardinal eigenstate of the combined system,
one has

P

(W) =Wy ), (27a)
LDV — & P|W¢

IW5>=Z< |8k_8;| Doy, e g ), (27b)

whereC™® is a nontrivial solution to (11), whil&V, is given by (23a).

All properties of the systen“ alone, such as expectation values of various ob-
servables that refer to this system, can be deduced from the|$tgteSimilarly, all
properties of the syste®” can be deduced from the state?). Only those properties
that refer to both systems require the knowledge of the complete eigenitateAc-
cordingly, the statéWwy) contains a full description of the systefif, while the state
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|\p}g) contains a full description of the systefif. Note that neithefw¢) nor |\If,’j) is
normalized. Only a combined eigenstédg ) is normalized.

Further and according to (27b), the staie) € X? is fully determined by the state
|W) € X¢ and by the corresponding eigenvakye Thus, the statgl}) that describes
systemS® and the corresponding eigenvalgge completely determines the eigenstate
|¥,) of the combined systeis.

Using (2a) and (2b) one can express the inverse $f — B) in the spacex’ as

(esb—B)*:Z '®i><;pi', e ¢ M) (28)

1

Expression (27b) can be hence written in a compact form
(W!) = (&S — B) 1(V — &xP)| ). (27H)

Consider now relations (7) and (11). Those relations combine into a single equa-
tion
[R(er) + Al|Wf) = S| ¥y, (29)
where(e), A andS* are operators that act in the spacg and that in the basfix;)}

have matrix elements (8) and (9), respectively. Using (28) opeffey can be ex-
pressed in a compact form

Q(e) = (V — sP) (S — B) 1V — &P). (84)
In a similar way relations (¥ and (11) combine into
[Q%€e0) + o + A]|¥f) = & (S* — B) | W) (29)
Operators2°(¢), & and 8 can be also written in a compact form
Q%) = (V — PSB) (¢S — B) '(V — BSP), (204)
@ =PS’BS?P-VS’P-PS?V, B = PSP, (20K)

whereS™? = ()71 = Y, |®;)(®;| is inverse ofS’ in the spacex?, i.e., S*S =
st =10

Relations (29) and (2Pare nonlinear eigenvalue equations in the spageCon-
sider, for example, relation (29). Solutions of this equation are all eigenvglug$i;}
of a combined systerd and the corresponding eigenstaé$) that describe systesr.
According to (27b), those eigenvalues and eigenstates determine projgdtjynand
hence corresponding eigenstatds) of the combined system. Thus equation (29) is
an equation that explicitly describes systé&hsubject to the interaction with the sys-
tem S?, but implicitly it describes the entire interacting systémAll operators in this
equation act in the-dimensional spac&¢. OperatorsA andS® alone describe the sys-
temS¢ in the absence of the interaction with the syst§in The entire interaction with
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this system and influence of this system on the sys$éns succinctly expressed by the
operator(e).

Eigenvalue equation (29) is@x p eigenvalue equation. In this respect, it is sim-
ilar to the eigenvalue equation (1a) that describes the sySteatone and that is also a
0 X p eigenvalue equation. Formally, eigenvalue equation (29) is a perturbed eigenvalue
equation (1a), where the role of the perturbation is assumed by the op@cajoHow-
ever, though this eigenvalue equation refers only tosttgmensional spacg, it has
as a solution all cardinal eigenvalues and eigenstates of the combined system. Hence,
this equation can have as many(ast+ »n) distinct eigenvalues and eigenstates. This is
possible since (29) is not a linear eigenvalue equation. The eigenyatdi¢his equation
appears on the right-hand side of (29), but it also appears as an argument of the operator
R(e) on the left-hand side of this equation. This equation is hence nonlinear, and it can
have much more solutions than the dimenssoof the spaceX¢. Therefore, eigenstates
W) of (29) are usually not orthogonal to each other. If this equation has more solutions
than the dimensiop of the spaceX{, which is almost always the case, corresponding
eigenstates are linearly dependent. Orthonormalized and linearly independent are only
complete eigenstaté¥,) that describe the combined systein Note, however, that if
er ¢ {A;}is a degenerate eigenvalue of the combined system, gfq,if are the cor-
responding (linearly independent) eigenstates, tHgh) are also linearly independent
(see appendix).

Consider the effect of the slow inclusion of the interaction between sysf#ms
andS?. In the absence of the interaction, there is a sharp separation between those two
systems. There exist a complete §dakt,)} of the eigenstates of the combined system
such that each eigenstdwg,) refers either entirely to the subsyste$fi or entirely to
the subsystens”. One arrives at the same conclusion formally from the eigenvalue
equation (29). Namely, ¥ = P = 0 one has2(¢) = 0 and this equation reduces
to the eigenvalue equation (1a). One thus obtairimearly independent eigenstates
W) = 10;) € X7. SinceV = P = 0, (27) implies|\If}j) = 0. Hencel¥) = |W}) are
o eigenstates of the combined system. Remainieigenstates of this system coincide
with unperturbed eigenstaté®,) € X°. By definition, those eigenstates are singular
(e; = A;), and therefore they are not obtained as a solution of the equation (29) that
produces all cardinal and may produce only some singular eigenstates.

If the interaction is nonzero, one h&%¢) # 0 and there is no more clear separation
between systemS¢ andS”. Almost every eigenstatial,) of the combined system has
in this case a nonvanishing compong#if) € X¢ as well as a nonvanishing component
W) e Xf). In addition, interaction usually shifts almost every unperturbed eigenvalue,
and therefore large majority of the perturbed eigenvalyés cardinal ¢, ¢ {1;}). If a
particular unperturbed eigenvalue is not effected by the interaction, this is due either to
some symmetry, or to some other special condition. Since all cardinal eigenvalues are
solutions of the equation (29), with the inclusion of the interaction, however small, this
equation suddenly acquires a huge number of solutions. However, if the interaction is
small, either the componeiw;) € X¢, or the componenty}) Xf) of the eigenstate
|W;) will be usually dominant. If the componen¥y) is dominant, it is proper to inter-
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pret the staté\W,) as the state describing syste#fi subject to the perturbation by the
systemS?. However, if the componem®?) is dominant, it is proper to interpret the state
|W,) as the state describing systeth perturbed by the interaction with the systeéin
Thus in most cases one can still associate each eigen$tatef the combined system
either with the systens?, or with the systenss”. With the increase of the interaction,
this association becomes more blurred and it is more difficult to associate thplgtate
either withS¢ or with S?.

Above relations apply to the general cdse: 0. If P = 0 those relations simplify.
In particular, relations (27) reduce to

o

(W)= w2y ey, (30a)
2 (D |V P
|Wf)=z%|¢i), (30b)

i

while relation (23a) simplifies to

P n
= (k) (k) s IVI®N P IVIXp)
Wk — szp Cs CP [Z (Ek _ )\‘i)z + Ssp ) Ek ¢ {)"l} (31a)

i
For completeness, note thatRf= 0 relation (23b) that refers to singular eigen-
states simplifies to

P n n

sIVI®(PilVIxp)

w, = chrch (s [V P ! ga p®*p®),
LA FEk v

& = )"j S {)\.l} (Blb)
In addition, one obtaing = 0, = 0 and®(¢) = 2°(¢). In particular,

— (X IVIP) (@i VIxp)
Qeple) = Q3e) = Y - L

1

Relation (29 hence reduces to the relation (29).
In a metrics induced by the positive definite oper&ane can define the proba-
bility wy to find the eigenstatgly) in the systens*

e g (84)

1 P
wi = (W{[S|) = - > POy x,) (32a)
sp

as well as the probabilitw? to find this eigenstate in the syste$fi:

(D V¥ 2
wy = (W] S|¥7) = Z(Ek_—,\k)z (32b)
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If the base vectorsy,) in X are chosen to coincide with the eigensta®s),
expression (32a) simplifies to

1 4
=Y chc®. 324
wk Wk - N S ( )
From (32) one finds
wy + w,lz =1 (33)

This relation must be satisfied in order for quantiti’sandw? to be interpreted as
probabilities. In the general cae# 0 relation (33) can be satisfied only with an arti-
ficial definitions of probabilitiesv? andw]. Namely, one hag¥{|S|W?) = (W¢|P|w}))
and if P # 0 componentsw;) and|\If,f) of |W,) are in general not orthogonal to each
other in the metrics defined by the operaBoAs a consequence;; +w; # 1 and quan-
tities w¢ andw cannot be interpreted as probabilities. One can avoid this drawback by
using the metrics induced by the opera®r= S* + S instead of the metrics induced
by the operatoS. In this metrics, one can define quantitie§’ and w?’ that satisfy
w4+ w,’j/ = 1. However, there is a drawback to this definition as well. Namely, in this
metrics eigenstatelsl,) and |W¥;) that correspond to mutually distinct eigenvalues sat-
isfy (¥, |S|¥;) = —(¥|P|¥;). Hence, in this metrics those eigenstates are usually not
orthogonal to each other. The same applies to the metrics induced by the unit oherator
All those problems are avoidedRf = 0.

Until now, we have considered cardinal solutions to the combined system. Those
solutions are most numerous and most important. In the case of singular solutions
slightly more complicated relations are obtained. Componefit € X¢ of a normal-
ized eigenstat¢y,) is still given by the relation (27a) where the quanti#f is now
given by (23b). However, componenk?) € X’ of this eigenstate is

" P CD,V— Pjw j
|\I’Il{7>= Z Z;( | &x Pl k>|q>i>+|\p1ib>’ 8k=)hja (34)

o) Bk~ hi

where|w/”) = W, Y*Y" D®|®;,). In addition, relations (13) and (16) combine into
[R(e0) + A|WE) + [V — &Pl W) = &S| wg), (35a)
(®),IV —&P|Wi) =0, & =1, (35b)

Unlike relation (29) that involves only the staté;’) € X¢ which refers to the

systemS“ alone, relations (35) contain also the stlalféb) € X’ that refers to the sys-
temS?. Those relations thus partially mix spaces andX?. This is less appealing than
elegant relations (29) and (3%hat involve only the spac¥y. However, this drawback
is highly compensated by the fact that there are usually very few singular solutions.
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7. Generalisation to the time dependent eigenvalue equation

Relation (3a) is time-independent. The above method can be easily generalised to
the time-dependent eigenvalue equation

0
ihaS|\IJ(t)> =H|w(@®)). (36)
An arbitrary solutionW(z)) to this equation is a linear combination
n+p
(W)= clwpe /", (37)

k

where|¥,) are orthonormalized eigenstates of the time independent eigenvalue equa-
tion (3a), ¢, are the corresponding eigenvalues apdre unknown coefficients to be
determined from the initial conditions. In analogy to (26) one has

W) = |¥0)) + ¥ @), (38)

where |[W%(r)) € X% and |W"(r)) € X} are projections ofW, (1)) on subspacex

andej, respectively. Hence
n+p ' n+p '
(W) = alwpe W)= ol wplem (39)
k k

Eigenvalues;, and eigenstateish;’) can be obtained as solutions of relations (29)
and (35). Once; and |¥}) are known, projection\y,’j) of the eigenstat¢w,) on the
spaceX’ can be easily derived. Above relations hence provide a general method for
the solution of the time dependent eigenvalue equation (36). In general, summations in
expressions (37) and (39) involve cardinal as well as singular eigenpiajesiowever,
the number of cardinal eigenstates is usually much larger than the number of singular
eigenstates. Hence, for largene can in most cases neglect the contribution of singular
eigenstates.

One is usually interested in the time evolution of a stat€r)) that is atr = 0
prepared in a well-defined stat@ (0)). In particular, if(¥(0)) = |©,) € X, at some
latter time: this state will evolve in the stat®;(r)) ¢ X¢. Similarly, if [¥(0)) =
|®;) € X°, at some later time this state will evolve in the stat@; (1)) ¢ X°.

We will now consider in more details time evolution of the sta@s(z)) and
|®;(¢)). For the sake of simplicity, we will restrict our consideration to the dase0.
Generalisation to the cage+# 0 is straightforward, and can be obtained along the same
lines.

If P = 0 then (see appendix)

n+p 1 4 )
0= ol S sionwe @

k k p
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It is convenient to choose base vectys) to coincide with the eigenstatg® ).
With such a choice (40) simplifies to

n+p (k)= )
©,0) =) iz e (41a)
k k
Hence
n+p (k)* . n+p (k)= )
o) = 3. Splurle Joln) =3 Slue . )
k k k k

We emphasise that relations (41) contain implicit assumption that all relevant quan-
tities are expressed in the bg$e,)}. In particular, if|¥,) is cardinal, the vectoE® is
a solution of (11) where matrice®(e;), A andS* are expressed in the bage®;)}. In
this base operato’s andS” are diagonal, and one has, = Edsp andSg, = dsp.

Since the statef®;) = |©,(0)) form a base inX{, relations (40) and (41) deter-
mine time evolution of each staf@ (¢)) that is atr = O prepared in the systesf'.

In a similar way one finds time evolution of statds (¢)):

1 37 (x:IVI|D)C* i
|q)i (t)> = Z 1/2 Z e A |\Ijk>e |8kt/h’ )\'i ¢ {Sk}a (42a)
Wi k=M
1 Y0 (VD) CP* | D™ iy
|CI>JU(Z)> = Z 1/2 ZS - _ )\’J‘ . |qjk>e Iakt/h+ |: Z vl/z |qjk>:|e I)\]t/h’
k(extn) "k Bk =4 k(ex=2;) "k
Aj € {e). (42b)

Relation (42a) applies to the case when unperturbed eigenvalsi@ot a singular
eigenvalue if the combined system, while (42b) applies to the case whem singular
eigenvalue of the combined system. In this latter case one has an extra contribution to
the stateg®;, (7)) that involves singular eigenstateg;) with ¢, = ;. As discussed
above, the contribution of such eigenstates is usually negligible, especially fornlarge

Since the stategb;) = |®;(0)) form a base inXl/j, relations (42) determine time
evolution of each statgl(z)) that is atr = 0 prepared in the systesf. Relations (41)
and (42) hence determine time evolution of an arbitrary $tate)) € X, ,.

From the above relations one easily obtains all necessary probability ampli-
tudes. For example, if ifX¢ the base{|x,)} = {|®;)} is used, probability ampli-
tudes(©,[S|0;(1)) = (0,[S|0(1))(p = 1,..., p) and(D;[S|O,(1)) = (P;|S|OL(1))
(i=1,...,n)are found to be

ptn
1 .
(©,[8]0,1) =) chgb*c;")e—w“/h, (43)
k
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Chr Y0 (0,]V]0,)CH

CASCRGIESY e a g lad,  (44a)

— Wi & — A
Chx Y0 (@;,[V]®,)CH
(@,18]0,(0))= > W A _k_l L_gtewt/h
ke#hy) BT A
chxp®T
+[ ST]{”]e—'M’/h, Aj € {an)- (44b)
k(er=A;)

Probability amplitudes® , |S|O; (1)) refer to the spac& and they determine time
evolution of a systen$“. On the other hand, probability amplitudgs; |S|©,(¢)) refer
to the spacex? and they determine transition probabilities for a state that is atrtisn®
prepared in a systed” to be found at time in some statéd;) of a systemsS?.

Fort = 0 above relations in conjunction with orthonormality relation (1b) and
orthogonality conditionN®;|S|®,) = (®;|S|©,(0)) = 0 imply

p+n 1
(©,1810,) = > ch‘gﬂ*c;p = 8sp, (45)
k

Chr Y0 (0,]V]©,)CH)

®;(S|©;) = =0, A : 46a
(®,]S16) ;wk —y ¢ (ex) (46a)
C®x P D LIV|© Cc®)
(d>ju|s|®s)= Z ‘jv Zp< J |_|)L-p> p
kethy K Gk T A
chxp®
+ [ T] =0, A€ {el. (46b)
k(ex=1) k

Probability amplitudeg®;|S|®;(¢)) and(®;|S|®; (7)) can be derived in a similar
way.

8. Exampleof theinteraction of two quantum systems

In order to illustrate the above method, consider the interaction of a two-
dimensional systenss with a known three-dimensional systes§.

Let the systens5 be described by the generalised eigenvalue equation (1a) where
in a basg]x,)} one has

1 -05 1 03
A=[—0.5 o] Sa=[o.3 1]' “7)
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Let the systensss be described by the generalised eigenvalue equation (2a) where

in a basq|r)}
1 2 3 1 05 02
B=|2 2 1]}, =05 12 05]. (48)
3 15 02 05 13

Let further the combined syste&s that includes the interaction between systems
S5 and S} be described by the generalised eigenvalue equation (3a) where in a base

{Ir), Ixs)}
B IV s 1Pl
H= [wwb A ] = [I“Plb S ] (492)

and where generalised interactiow, P) is given by

o 12 -1 wos [03 —05 02
"V —[1 2 3| "PP"=lo3 01 —oal (49b)

One finds that this combined system has eigenvalues
g1 = —2.32918 g, = —1.50057 e3 = 0.06038

(50a)
£4 = 4.35986 es = 60.42988
The corresponding eigenstates are
111912 0.35630 053374
—0.49548 0.29638 —0.49000
W) = | —0.39826(,  |W;) = | -0.02665|, w3 =| 020859 |,
~0.51397 ~0.37694 0.40996
0.05630 —0.73890/ —0.57247
(50D)
0.07052 1.17903
0.63770 —2.38652
W) = | 0.27950], W) = | 1.73945
0.44679 —2.44302
0.34263 1.36072

This can be verified by inserting those eigenvalues and eigenstates in the eigenvalue
equation (3a) with matricds andSas given by (49). One can also verify that eigenstates
(50b) are orthonormalized according to (3d).

We will now solve the same eigenvalue equation by the above suggested method.
In this method, in order to solve combined eigenvalue equation, one has to know the
solution of the eigenvalue equation (2a) describing the systeriThis system has three
eigenvalues and three corresponding eigenstates orthonormalized according to (2b). One
finds

A =—166138 i, =189610 A3 = 520405 (51a)
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0.99832 0.23961 0.45738

|®1) = | —0.56029|, |®,) = 086544 |, |®5) = | —0.39004|. (51b)
—0.32137 —0.26545 0.86160

We first notice that unperturbed eigenvalaeand perturbed eigenvaluessatisfy
interlacing rule. For example; = —2.32918 < A; = —1.66138 < ¢3 = 0.06038 in
accord with (21), etc.

From (49b) and (51b) one derives matrix elemefsV|®;) = (u,|®;) and
(XsIPI1®:) = (X D;):

U1|q>1 = 019912
up|®,) = 2.23594
Ui ®3) = —1.1843Q

{ ) uz|P1) = —1.08638
{ )

{ )

(X1|®1) = 0.51537

{ )

{ )

Up|®y) = 1.17415
2.26211

)
)
uz| ®3)
(52)
)
)
)

X2|q)1 = 037202
Xo| Do) = 0.26461

Xo|®3) = —0.24643

X1|®,) = —0.41393

(
(
(
(
(
X1|®3) = 0.50456 (
One can now proceed using relation (11) that has a nontrivial solution if the de-
terminanti(e) given by (7) is zero. Equivalently, one can use relatiorf)(ftfat has a
nontrivial solution if determinank(s) as expressed by relation’ts zero. For the sake
of illustration we will apply this latter approach.
Using relations (20) and (52) one obtains matrix elements of matfgs), «
andp

o0 ©) 1.11373+ 9.12516+ 1451632
£)= )
1 & — )»1 & — )\.2 & — )\.3
0.21932 0.45215 1256382
Q(e) = , 53a
22(€) 8—k1+8—k2+ £ — s (539)
Q0 (€)= Q0 (&) = —O.49423+ 2.03125_ 1350483
12 -t B 8—)\1 8—)\2 8—)\3 ’
011 = 404931 Oop = 152069 12 = 021 = —222630 (53b)
B11 = 0.69151 Boo = 0.26914 Bi2 = P21 = —0.04214
Inserting (47) and (53) into (Yone obtains
Q(l)l(e) + 5.04931— 0.3084% Q(l)z(e) — 2.72630— 0.34214
h(e) = =0. (54)

"~ [Q9,(e) — 2.72630— 034214  Q%,(e) + 1.52069— 0.73086:

Roots of this equation are cardinal eigenvalues of the combined system. One easily
verifies that eigenvalues (50a) satisfy (54). In addition, one finds that there are no other
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solutions to (54). This shows that relatiori)(roduces correct eigenvalues of the com-
bined system. Moreover, in this particular case the fundtiGn has exactly five roots.
Since the combined system is five-dimensional, those are all eigenvalues of this system,
and there are no singular solutions.

Once the particular eigenvalug is found as a root oh(e), the corresponding
cardinal eigenstate (10) is determined by the column veetBr nontrivial solution to
the matrix equation (1}

[le(ek) +5.04931 Q9 (ex) — 2.72630] (Cl)
Q9(ex) — 272630 Q9,(gx) + 1.52069] \ C,

0.30849 03421 C
= & . (55)
0.34214 073086] \ C»
Using obtained eigenvalues one finds:

1 1 1
@ — 2 — Q) —
= <—0.10954>’ "= (1.96028)’ = <—1.39639>’

1 1
@ — 5) _
= <O.76687> = (—0.55698)'

Inserting above vectors into (10) and using (50a), (51a) and (52) one obtains, up
to the normalisation constant, eigenstates (50b) of the combined system. One can also
calculate quantitiedV, according to (23a) and normalize those eigenstates. One thus
obtains eigenstates (50b) up to the sign. This shows that suggested method produces
correct cardinal eigenstates of the combined system.

From a numerical point of view above example is not very interesting. It can be
solved more efficiently by many other methods. However, it illustrates main features of
the suggested method, its advantageous and possible drawbacks.

Eigenvalue equation (55) that describes the sysfnsubject to the interaction
(49b) with the known syster§% is a 2x 2 eigenvalue equation. In this example, sys-
tem S5 was relatively small three-dimensional system. However, dimensiohthis
system can be arbitrary large. All cardinal solutions of the combined system will be still
the solution of the 2« 2 eigenvalue equation that is similar to the eigenvalue equation
(55). If singular eigenvalues exist, dimension of the corresponding eigenvalue equation
will be slightly larger than 2< 2, but still much smaller than the dimension of the com-
bined spaceX,,.,. Thus if the dimension of the systeff is large enough, this method
will be numerically much more efficient than other known methods.

56)

9. Conclusion

Quantum systens consisting of subsysten®’ andS? is considered. With a sys-
tem S is associated @-dimensional spacd and with a systens” is associated an
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n-dimensional spac&’ that is orthogonal to the space;. SystemS* alone is de-
scribed by the generalisgdx p eigenvalue equatioA|Q,) = E;S|O,)(s = 1, ..., p),
where A and §* are Hermitian operators, whil&" is, in addition, positive definite.
Similarly, systemS? alone is described by the generalisec n eigenvalue equation
B|®;) = 4, S|®;)(i = 1,...,n) whereB andS’ are Hermitian operators, whilg’ is,

in addition, positive definite. It is assumed that the solution to this system (eigenval-
ues; and the corresponding eigenstat®s)) is known. The combined quantum sys-
temS = S* @ S? is described by a generalised eigenvalue equgfion B + V]| ;) =

e[S + S + P]|¥;), where operators andP describe generalised interaction between
subsystems“ andS”. Formulation in terms of generalised eigenvalue equations allows
for a most general treatment of the combined sysfeamd its subsystemS$® andS?.

New method for the solution of the combined system is derived. In this method
one distinguishes cardinat,( ¢ {A;}) and singular £, € {A;}) eigenvalues and the
corresponding eigenstates of the combined system. Efficiency of this method does not
depend on the magnitude of the interaction. Most important feature of this method is re-
placement of the hugé + n)(p + n) eigenvalue equation that describes the combined
system with much smaller eigenvalue equation that refers essentially to the s§stem
In particular, all cardinal solutions can be derived from the o eigenvalue equation
[R(er) + AlYY) = &S |W)) that refers to the systest alone. Formally, this equation
is eigenvalue equatioA|®,) = E,S'|0,) that described isolated syste$fi subject to
the perturbatiorf2(¢). This perturbation is a Hermitian operator acting in the spege
It is expressed in terms of the eigenvaluesf the systenss” and in terms of matrix ele-
ments(x;|V|®;) and(x;|P|®;), where vectorsy,) form a base inX{. Those quantities
incorporate essential features of the syst#hand of the interactioV, P) between the
two systems. Eigenstat@;) of this equation is the projection of the eigenstalig) on
the spaceX{. This eigenstate describes all properties of the systémOnce|¥}) is

known, the projection¥}) of |¥;) on the space&’ can be easily obtained. Thus, if the
solution to the systers” is known, one can obtain all cardinal solutions of the combined
system as a solution to the above eigenvalue equation that refers to a sstdome.
Slightly more complicated expression is obtained for singular eigenvajueg;} and
the corresponding eigenstates, provided such eigenvalues and eigenstates exist.

The method can be easily generalised to the time-dependent eigenvalue equation
ihS0/0t|W(t)) = H|W(z)). In conclusion, the systed that interacts with potentially
very huge known syster§” can be described in an exact way with an eigenvalue equa-
tion that refers essentially to the syst&ifi In this eigenvalue equation the role of the
“perturbation” is assumed by the opera®(s) that incorporates basic features of the
systemS? and of the interaction between the two systems. In general, one has to know
the solution to the systeid” in order to construct this operator. However, in practical
applications one can use a different approach. Even if the solution to the sgétem
is not known, one can model this operator in such a way as to reproduce some known
properties of the systei&i“. This modelling should be assisted with the knowledge of
the general structure of the opera®(s) and with possible partial knowledge of the
systemS? and the nature of the interaction between the two systems. Such an approach
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may provide a reasonably good description of a systérinat interacts with a relatively
large and not completely known systesh.

In the caseo = 1 the suggested method and its performance was successfully
verified by the computer program using random matrices as large=a5 - 1P [6].

Appendix
A.1. Basic relations

If S* is Hermitian and positive definite iW%, (S')~*/? exists and it is also Her-
mitian and positive definite. Eigenvalue equation (1a) is hence equivalent to

A0|¢s> = Esl(»bs)v (Al)
where

Ao=(S)2A() 2 160 = (59 6,). (A1)

Hermiticity of A andS* implies hermiticity ofAp, and the eigenvalues; of the
eigenvalue equation (1a) are hence real. Further, eigen$¢ajesf Ao can be ortho-
normalized according t¢p,|¢,) = dsp, Which implies (1b). The sef®,)} is hence
complete. In a similar way one shows that eigenstates of (2a) and eigenstated, )
of (3a) can be orthonormalized according to (2b) and (3d), respectively.

Define operator$?, I andl:

n+p

Y n
1= ") 61K 1P =10 (@S, =) (W (WS. (A2)
K i k

Using (4b) one find$*|x,,) = |x,) for each vectory,) € X¢. Since these vectors
form a base inX¢, operatorl is a projection operator on this space. In a similar way
one finds that” is a projection operator on the spaxg, while | is a projection operator
on the combined spacg,,,, i.e., it is a unit operator. One also hias- 14 + 1°.

Multiplying perturbed eigenvalue equation (3a) from left with;| and using (2)
and relationg®;|A = (®;|S* = 0 one obtains

(8 — 1){ @i [S|Wi) = (D4]V — &, P|Wy).
Since [®;) € X) one has(®;|(V — eP) € X4. Hence(d;|(V — eP) =
(®;](V — eP)l“. Using (A.2) one finds
P

(ex — M@ S| W) = D (D IV — &xPlxo)(x|[K W), i=1....n.  (A3)

N

Multiplying perturbed eigenvalue equation (3a) from left wit,| and using
(xs|B = (x;|S* = 0 one finds

(XsIV — &xPIWy) + (x|A — &S"| W) = 0.



T.P. ZivkovE'/ On the interaction of two finite-dimensional quantum systems 67

FurtherA — ¢S = (A — ¢S)14, and hence

P
IV = aPlW) + ) (X6 |A — S 1) X [K W) =0, s=1....0. (A4)

)4

In particular, for{|x,)} = {|®,)} this relation simplifies to
OV — &xP|Wy) + (Es — e0)(0,]S*| W) =0, s=1,...,p0. (A.4)

Relations (A.3) and (A.4) are starting relations for the derivation of theorems 1
and 2.

A.2. Proof of theorem 1

Lete, ¢ {A;} be a cardinal eigenvalue of the perturbed equation. Dividing (A.3) by
(ex—A;) (i =1, ..., n), multiplying by|®;), summing ovel, adding to both sides of the
obtained relation“| W) = > | x)(xs|K?|¥) and using (A.2), one derives expression
(10) where coefficient€® are given by (12). This relation expresses the perturbed
eigenstatd ;) as a linear combination of unperturbed eigenstades that span the
spaceX’ and stategy,) that span the spack]. Next one has to determine unknown

coefficientsC®. Multiplying expression (10) from left witki,|(V — &,P) one obtains

o
(Xs1V = &PlW) =) Qe CP, (A.5)

)4

whereQ (¢) is given by (8a).
Comparing (A.4) and (A.5) one finds

P
> [Qeplen) + (x:|A — &S| x,)]C¥ = 0. (A.6)

p

This is relation (11). It is a homogenous linear sejpdinear equations ip un-
knownsC® . In order for the eigenstate (10) to be nontrivial, at least one coeffid#ht
must be nonzero. Hence (A.6) should have a nontrivial solution. However, this relation
has a nontrivial solution if and only if the determinant of a system vanishes, which gives
condition (7).

This proves that the necessary condition §oe= ¢, to be an eigenvalue of the
perturbed equation (3a) is that it satisfies (7). Further, it shows thatfe, is a per-
turbed eigenvalue, the corresponding eigenstates are all of the form (10), where the
coefficientscj,k) are components of a column vec®f, nontrivial solution of a matrix
equation (11).

Following the above derivation backwards one finds that the inverse is also true.
Each roote = ¢, ¢ {A;} of (7) is an eigenvalue of the perturbed equation (3a), and all
the corresponding eigenstates are of a type (10), where coeffidgﬁt& (Xp K W)
satisfy (11). This proves theorem 1.



68 T.P. Zivkowt' / On the interaction of two finite-dimensional quantum systems

A.3. Proof of theorem 2

Assume the same conditions as in theorem 1.}et A; be a singular eigenvalue
of the perturbed eigenvalue equation (3a). Let furthebe an-degenerate eigenvalue
of the unperturbed equation (2a), and [l&t;,) (v = 1,...,n) be the corresponding
unperturbed eigenstates.

Dividing (A.3) by (ex — 1) (A; # &), multiplying by |®;), summing ove¥, adding
to both sides of the obtained relatidn, |x,) (xs[K* W)+, (P, | W) |®;,) and us-
ing (A.2), one derives expression (15) where coefficiéitsand D are given by (17).
This relation expresses the perturbed eigengtdite as a linear combination of unper-
turbed eigenstate®;) that span the spacé’ and statesy;) that span the space;.

Next one has to determine unknown coefficieGf8 and D". Multiplying (15)
from left with (x,|(V — &P) one obtains

p 1
61V — P8 = Y Qee)CP + 3 (xIV — eP®;,) DY, (A7)
V4 v

whereQsy(er) is given by (8b).
Comparing (A.4) with (A.7) one finds

P n
> [Qepen) + (x:]A =S [x)]C + D (xlV — ePl®,) DY =0,
p v

s=1...,p. (A.8)

Further, relation (A.3) fof = j implies

P
Y @IV = aPlx,)CP =0, v=1,....n (A.9)
p

Relations (A.8) and (A.9) form a homogenous linear segt-$f; linear equations in
p+n unknownsC" andD{". Expressed in a matrix form those relations are equivalent
to relation (16). This relation has a (nontrivial) solution if and only if the determinant of
a system vanishes, which gives condition (13).
This proves that the necessary conditiondpe= A ; to be a singular eigenvalue of
the perturbed equation (3a) is that it satisfies (13). Further, it shows thatf; is
a perturbed eigenvalue, the corresponding eigenstates are all of the form (15) where the
coefficientsC'? andD{" are given by (17). Moreover, those coefficients are components
of a column vectoC®, D®) that is a nontrivial solution of a matrix equation (16).
Following the above derivation backwards one finds that those conditions are also
sufficient. Ife, = X ; satisfies (13) it is a singular eigenvalue of the perturbed eigenvalue
equation (3a). Further, each nontrivial soluti@®, D)) of (16) generates according
to (15) the corresponding eigenstate. This proves theorem 2.
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A.4. Proof of lemmas 1 and 2

By definition, nullity of the operatof2(s;) + A — £, S* is the number of the linearly
independent solutions to (11). L&) (» = 1,...,1) be those linearly independent
solutions. According to (10) each vect6f<” generates a perturbed eigenstabg, ).
Assume those perturbed eigenstates to be linearly dependent. Then there exist a nontriv-
ial set of coefficients, such tha_, ¢,|¥;,) = 0. Sincel®;) € X’ while|y;,) € X¢, this
and (10) impliesy_, >, C*V¢,|x,) = 0. Since base vectotg;,) are linearly indepen-
dent, one had_, c,C*) =0 (s =1, ..., p). Thus vector€*" are linearly dependent,
contrary to the assumption. Hence the eigenstpbgs must be linearly independent.
This shows that the degeneracyspkquals the number of linearly independent solutions
C® to (10), which completes the proof.

Note that the above derivation proves not only that eigenve¢igrs are linearly
independent, but also that the projectigig,) = ) C§kr)| xs) Of those eigenstates on
the spacex are linearly independent.

Lemma 2 can be proven in the same way.

A.5. Proof of the interlacing rule

Let the unperturbed eigenvalugs (i = 1, ..., n) and the perturbed eigenvalues
e (k=1,...,n+ p) be arranged in a nondecreasing order. In the specialcasd
those eigenvalues are interlaced according to [6]

51<)\1<52<)\2< g)\n <8n+l- (AlO)

According to a matrix representation (5), transition from the unperturbed equa-
tion (2a) to the perturbed equation (3a) represents augmentation of this equation by
o additional rows ang additional columns. One can obtain this augmentation applying
p times matrix augmentation by a single row and a single column. Thus, a general case
p > 1 can be obtained as a result@buccessive applications of the= 1 case. How-
ever, to eactp = 1 case interlacing relation (A.10) applies. By induction, one obtains
general interlacing rule (21). For example, fet= 2. One can obtain this case by two
p = 1 augmentations. Denote perturbed eigenvalues obtained after first augmentation
by e3....,¢€,,, and denote perturbed eigenvalues obtained after second augmentation
by e, ..., &,42. According to (A.10) one has

e KA < <A< <Ay <8y

After first augmentation, eigenvalues, ..., e, , assume the role of the unper-

turbed eigenvalues;, and hence applying (A.10) once more one obtains

/7 /7 /
181 <2< 6 < <611 < Enga.

Combining those two relations one finds < A; andA; < g;4». This is rela-
tion (21) for the case = 2.
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A.6. Proof of orthonormality relations (23)—(25)

Using relations (2b) and (3d) one finds that each cardinal eigenstate should be
normalized according tw, “/%|;) where|W,) is given by (10) and where

P n
V — & P|®D;) (D [V — &P,
wk=Zc§">*c§,">{Z[<Xs' £xP) (DiV — &:Plx,)
sp

(ex — 1)

i

4 (XsIV — &P i) (@i [Pl )

&k — A
(Xs|PI®;)(®;|V — &Pl x,)
St
+ Er — )\'i + sp

In the case of singular eigenstates (15) one finds

P n
V — & P|®;) (D [V — &P,
wk:Zc;k>*c<’<>{ 5 [<xs| £xP) (DiV — &Plx,)
sp

p 1 )\2
i(hier) (6 = Ai)
L D61V — &Pl (®i[Plx,)
Ex — A
(Xs IP|®;) (D 1V — &xPlx,) u
A DY*DY.
+ — + S5 +; \ "Dy

With some algebra above expressions transform into relations (23).
Consider now scalar productsl,|S|¥;) between normalized eigenstatgs;)
and|¥,). If both eigenstates are cardinal, one finds:

i [(Xs|V — &P (D |V — &Pl x,)
(ex — Ai)(er — Ay)

4 (XsIV = &xPIPi) (@i [Pl xp)

P
(WeISI) = (WeW))~Y2) " ch=c®
sp

i

gk — A
(XxsIPI®)(D; |V — &Plx,) a
* -y S

This relation can be transformed into (24). In the same way relation (25) can be
derived.

A.7. Time dependent eigenvalue equation
Relations (A.2) imply
105) = W (W [S10;), s=1,....p, (A.11a)
k
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@i} =D W(WlSI®), i=1....n, (A-11b)
k

where| ¥, ) are orthonormalized according to (3d).
If P = 0 relations (30) and (34) imply

1 14
(O4]S| W) = (O,]S|wf) = i > W68 x,)- (A.12)
k P

1 Y0 (®Vx,)CP

(D;1S|W;) = (®;]S|Wy) = . e #X,  (A13a)

w2 & — Aj
py_ DY
<d>jv|S|lIJk>E<cDjv|S‘qjk>= W, Ek :Aj, (A.13b)

The case (A.13b) can happen only\f,) is singular and if in addition the corre-
sponding eigenvalue equals = ;. Indexv labels possible degeneracy of the unper-
turbed eigenstatg® ;,) that have common eigenvalae.

From (A.11a), (A.12) and (37) one obtains relation (40), while (A.11b) and (A.13)
imply relations (42).
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